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1 Introduction

Let p be a fixed odd prime number. Throughout this
paper,Zp,Qp and Cp will denote the ring of p-adic
integers, the field ofp-adic numbers and the completion
of algebraic closure ofQp. The p-adic norm | · |p is
normalized as|p|p = 1/p. The space of continuous
functions onZp is denoted byC(Zp). Let q be an
indeterminate inCp with |1 − q|p < p−1/p−1. The

q-number of x is defined by [x]q = 1−qx

1−q . Note that
limq→1 [x]q = x. For f ∈ C(Zp), the fermionic p-adic
q-integral onZp is defined by Kim to be

I−q( f ) =
∫

Zp

f (x)dµ−q(x) = lim
N→∞

1
[pN]−q

pN−1

∑
x=0

f (x)(−1)x,

where[x]−q =
1− (−q)x

1+q
(see[1−9]).

(1.1)

From (1.1), we note that

qnI−q( fn)+ (−1)n−1I−q( f ) = [2]q
n−1

∑
l=0

(−1)n−1−lql f (l),

where fn(x) = f (x+n),(n≥ 1) (see[4]).
(1.2)

In particular, forn=1,

qI−q( f1)+ I−q( f ) = [2]q f (0). (1.3)

As is well known, the Boole polynomials are defined by
the generating function to be

∞

∑
n=0

Bln(x|λ )
tn

n!
=

1

1+(1+ t)λ (1+ t)x, (see[2,12]).

(1.4)
When λ = 1,2Bln(x|1) = Chn(x) are Changhee
polynomials which are defined by

2
t +2

(1+ t)x =
∞

∑
n=0

Chn(x)
tn

n!
(see[2,3,13,14]). (1.5)

The Euler polynomials of orderα are defined by the
generating function to be
(

2
et +1

)α
ext =

∞

∑
n=0

E(α)
n (x)

tn

n!
, (see[2,11]). (1.6)

Whenx= 0,E(α)
n = E(α)

n (0) are called the Euler numbers
of orderα.
In particular, for α = 1,En(x) = E(1)

n (x) are called the
ordinary Euler polynomials.
The Stirling number of the first kind is given by the
generating function to be

log(1+ t)m= m!
∞

∑
l=m

S1(l ,m)
t l

l !
,(m≥ 0), (1.7)

and the Stirling number of the second kind is defined by
the generating function to be

(et −1)m = m!
∞

∑
l=m

S2(l ,m)
t l

l !
, (see[11,12]). (1.8)
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In this paper, we consider theq-extensions of Boole
polynomials. From those polynomials, we derive new and
interesting properties and identities related to special
polynomials.

2 q-analogue of Boole polynomials

In this section, we assume thatt ∈Cp with |t|p < p
−1
p−1 and

λ ∈ Zp with λ 6= 0. From (1.3), we note that

∫

Zp

(1+ t)x+λ ydµ−q(y) =
1+q

1+q(1+ t)λ (1+ t)x

=
∞

∑
n=0

[2]qBln,q(x|λ )
tn

n!
,

(2.1)

whereBln,q(x|λ ) are theq-Boole polynomials which are
defined by

1

1+q(1+ t)λ (1+ t)x =
∞

∑
n=0

Bln,q(x|λ )
tn

n!
. (2.2)

From (2.1), we can derive the following equation :

∫

Zp

(
x+λy

n

)
dµ−q(y) =

[2]q
n!

Bln,q(x|λ ). (2.3)

Whenx= 0,Bln,q(λ ) = Bln,q(0|λ ) are called theq-Boole
numbers.
Now, we observe that

(1+ t)x+λ y = e(x+λ y) log(1+t)

=
∞

∑
m=0

(x+λy)m

m!

(
log(1+ t)

)m

=
∞

∑
m=0

(x+λy)m

m!
m!

∞

∑
n=m

S1(n,m)
tn

n!

=
∞

∑
n=0

{
n

∑
m=0

(x+λy)mS1(n,m)

}
tn

n!
.

(2.4)

The q-Euler polynomials are defined by the generating
function to be

[2]q
qet +1

ext =
∞

∑
n=0

En,q(x)
tn

n!
. (2.5)

Note that limq→1En,q(x) = En(x).
Whenx= 0,En,q =En,q(0) are called theq-Euler numbers.
By (1.3), we easily get

∫

Zp

e(x+y)tdµ−q(y) =
[2]q

qet +1
ext

=
∞

∑
n=0

En,q(x)
tn

n!
.

(2.6)

Thus, by (2.6), we get
∫

Zp

(x+ y)ndµ−q(y) = En,q(x),(n≥ 0). (2.7)

From (2.1), (2.4) and (2.7), we have
∫

Zp

(1+ t)x+λ ydµ−q(y)

=
∞

∑
n=0

{
n

∑
m=0

∫

Zp

(x+λy)mdµ−q(y)S1(n,m)

}
tn

n!

=
∞

∑
n=0

{
n

∑
m=0

λ mEm,q

( x
λ

)
S1(n,m)

}
tn

n!
.

(2.8)

Therefore, by (2.1), (2.3) and (2.8), we obtain the
following theorem.

Theorem 1For n≥ 0, we have

Bln,q(x|λ ) =
1
[2]q

n

∑
m=0

λ mEm,q

( x
λ

)
S1(n,m),

and
∫

Zp

(
x+λy

n

)
dµ−q(y) =

[2]q
n!

Bln,q(x|λ ).

From (2.3), we note that

Bln,q(x|λ ) =
1
[2]q

∫

Zp

(x+λy)ndµ−q(y).

Whenλ = 1, we have

Bln,q(x|1) =
1
[2]q

∫

Zp

(x+ y)ndµ−q(y). (2.9)

As is known,q-Changhee polynomials are defined by the
generating function to be

[2]q
[2]q+qt

(1+ t)x =
∞

∑
n=0

Chn,q(x)
tn

n!
. (2.10)

Thus, by (2.10), we get

∫

Zp

(1+t)x+ydµ−q(y)=
[2]q

[2]q+qt
(1+t)x=

∞

∑
n=0

Chn,q(x)
tn

n!
.

(2.11)
From (2.11), we have

∫

Zp

(x+ y)ndµ−q(y) =Chn,q(x),

where(x)n = x(x−1) · · ·(x−n+1).
(2.12)

By (2.9) and (2.12), we get

Bln,q(x|1) =
1
[2]q

Chn,q(x). (2.13)
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By replacingt by et −1 in (2.2), we see that

[2]q
qeλ t +1

ext = [2]q
∞

∑
n=0

Bln,q(x|λ )
1
n!
(et −1)n

= [2]q
∞

∑
n=0

Bln,q(x|λ )
∞

∑
m=n

S2(m,n)
tm

m!

=
∞

∑
m=0

m

∑
n=0

[2]qBln,q(x|λ )S2(m,n)
tm

m!
,

(2.14)

and

[2]q
qeλ t +1

ext =
[2]q

qeλ t +1
e(

x
λ )λ t

=
∞

∑
m=0

Em,q

( x
λ

)
λ m tm

m!
.

(2.15)

Therefore, by (2.14) and (2.15), we obtain the following
theorem.

Theorem 2For m≥ 0, we have
m

∑
n=0

Bln,q(x|λ )S2(m,n) =
1
[2]q

Em,q

( x
λ

)
λ m.

Let us define theq-Boole numbers of the first kind with
orderk(∈ N) as follows :

[2]kqBl(k)n,q(λ )

=
∫

Zp

· · ·
∫

Zp

(λ (x1+ · · ·+ xk))ndµ−q(x1) · · ·dµ−q(xk),(n≥ 0).

(2.16)
Thus, by (2.16), we see that

[2]kq
∞

∑
n=0

Bl(k)n,q(λ )
tn

n!

=
∫

Zp

· · ·
∫

Zp

∞

∑
n=0

(
λ (x1+ · · ·+ xk)

n

)
tndµ−q(x1) · · ·dµ−q(xk)

=

∫

Zp

· · ·

∫

Zp

(1+ t)λ (x1+···+xk)dµ−q(x1) · · ·dµ−q(xk)

=

(
1+q

1+q(1+ t)λ

)k

=[2]kq
∞

∑
n=0

(

∑
l1+···+lk=n

(
n

l1, · · · , lk

)
Bll1,q · · ·Bllk,q

)
tn

n!
.

(2.17)
Therefore, by (2.17), we obtain the following corollary.

Corollary 3For n≥ 0, we have

Bl(k)n,q = ∑
l1+···+lk=n

(
n

l1, · · · , lk

)
Bll1,q · · ·Bllk,q.

Theq-Euler polynomials of orderk are defined by the
generating function to be
∫

Zp

· · ·

∫

Zp

e(x1+···+xk+x)tdµ−q(x1) · · ·dµ−q(xk)

=

(
[2]q

qet +1

)k

ext =
∞

∑
n=0

E(k)
n,q(x)

tn

n!
.

(2.18)

Thus, by (2.18), we get

∫
Zp

· · ·
∫
Zp
(x1+ · · ·+ xk+ x)ndµ−q(x1) · · ·dµ−q(xk) = E(k)

n,q(x).

Whenx= 0,E(k)
n,q = E(k)

n,q(0) are called theq-Euler numbers
of orderk.
From (2.16), we note that

[2]kqBl(k)n,q(λ )

=
∫

Zp

· · ·
∫

Zp

(λ (x1+ · · ·+ xk))ndµ−q(x1) · · ·dµ−q(xk)

=
n

∑
l=0

S1(n, l)
∫

Zp

· · ·

∫

Zp

λ l (x1+ · · ·+ xk)
l dµ−q(x1) · · ·dµ−q(xk)

=
n

∑
l=0

S1(n, l)λ l E(k)
l ,q .

(2.19)
Therefore, by (2.19), we obtain the following theorem.

Theorem 4For n≥ 0, we have

Bl(k)n,q(λ ) =
1
[2]kq

n

∑
l=0

S1(n, l)λ l E(k)
l ,q .

By replacingt by et −1 in (2.17), we get

[2]kq
∞

∑
n=0

Bl(k)n,q(λ )
1
n!
(et −1)n =

(
[2]q

qeλ t +1

)k

=
∞

∑
m=0

E(k)
m,qλ m tm

m!
,

(2.20)

and

[2]kq
∞

∑
n=0

Bl(k)n,q(λ )
1
n!
(et −1)n = [2]kq

∞

∑
n=0

Bl(k)n,q(λ )
∞

∑
m=n

S2(m,n)
tm

m!

= [2]kq
∞

∑
m=0

{
m

∑
n=0

Bl(k)n,q(λ )S2(m,n)

}
tm

m!
.

(2.21)
Therefore, by (2.20) and (2.21), we obtain the following
theorem.

Theorem 5For m≥ 0, we have

m

∑
n=0

Bl(k)n,q(λ )S2(m,n) =
1
[2]kq

E(k)
m,qλ m.

Let us define the higher-orderq-Boole polynomials of
the first kind as
follows :

[2]kqBl(k)n,q(x|λ )

=
∫

Zp

· · ·
∫

Zp

(λx1+ · · ·+λxk+ x)ndµ−q(x1) · · ·dµ−q(xk),

wheren≥ 0 andk∈ N.
(2.22)

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


3156 D. S. Kim et. al. : A Note onq-Analogue of Boole Polynomials

From (2.22), we can derive the generating function of the
higher-orderq-Boole polynomials of the first kind as
follows :

[2]kq
∞

∑
n=0

Bl(k)n,q(x|λ )
tn

n!

=

∫

Zp

· · ·

∫

Zp

(1+ t)λ x1+···+λ xk+xdµ−q(x1) · · ·dµ−q(xk)

=

(
[2]q

1+q(1+ t)λ

)k

(1+ t)x

(2.23)

By (2.17), we easily get
(

[2]q
1+q(1+ t)λ

)k

(1+ t)x

=[2]kq

(
∞

∑
l=0

Bl(k)l ,q (λ )
t l

l !

)(
∞

∑
m=0

m!

(
x
m

)
tm

m!

)

=[2]kq
∞

∑
n=0

(
n

∑
m=0

m!

(
x
m

)
n!

m!(n−m)!
Bl(k)n−m,q(λ )

)
tn

n!

=[2]kq
∞

∑
n=0

(
n

∑
m=0

m!

(
x
m

)(
n
m

)
Bl(k)n−m,q(λ )

)
tn

n!
.

(2.24)

Therefore, by (2.23) and (2.24), we obtain the following
theorem.

Theorem 6For n≥ 0, we have

Bl(k)n,q(x|λ ) =
n

∑
m=0

(
n
m

)
Bl(k)n−m,q(λ )(x)m.

Replacingt by et −1 in (2.23), we have

[2]kq
∞

∑
n=0

Bl(k)n,q(x|λ )
(et −1)n

n!
=

(
[2]q

1+qeλ t

)k

ext

=
∞

∑
m=0

E(k)
m,q

( x
λ

)
λ m tm

m!
,

(2.25)

and

[2]kq
∞

∑
n=0

Bl(k)n,q(x|λ )
(et −1)n

n!

=[2]kq
∞

∑
m=0

(
m

∑
n=0

Bl(k)n,q(x|λ )S2(m,n)

)
tm

m!
.

(2.26)

Thus, from (2.25) and (2.26), we have the following
theorem.

Theorem 7For m≥ 0 and k∈N, we have

m

∑
n=0

Bl(k)n,q(x|λ )S2(m,n) =
1
[2]kq

λ mE(k)
m,q

( x
λ

)
.

From (2.22), we have

[2]kqBl(k)n,q(x|λ )

=
∫

Zp

· · ·
∫

Zp

(λx1+ · · ·+λxk+ x)ndµ−q(x1) · · ·dµ−q(xk)

=
n

∑
l=0

S1(n, l)

×

∫

Zp

· · ·

∫

Zp

(λx1+ · · ·+λxk+ x)l dµ−q(x1) · · ·dµ−q(xk)

=
n

∑
l=0

S1(n, l)λ l E(k)
l ,q

( x
λ

)
.

(2.27)

Therefore, by (2.27), we obtain the following theorem.

Theorem 8For n≥ 0, k∈N, we have

Bl(k)n,q(x|λ ) =
1
[2]kq

n

∑
l=0

S1(n, l)λ l E(k)
l ,q

( x
λ

)
.

Now, we consider the q-analogue of Boole
polynomials of the second kind as follows :

B̂ln,q(x|λ ) =
1
[2]q

∫

Zp

(−λy+ x)ndµ−q(y),(n≥ 0).

(2.28)
Thus, by (2.28), we get

B̂ln,q(x|λ ) =
1
[2]q

n

∑
l=0

S1(n, l)(−1)l λ l
∫

Zp

(
−

x
λ
+ y
)l

dµ−q(y)

=
1
[2]q

n

∑
l=0

S1(n, l)(−1)l λ l El ,q

(
−

x
λ

)
.

(2.29)
Whenx= 0, B̂ln,q(λ ) = B̂ln,q(0|λ ) are called theq-Boole
numbers of the second kind. From (2.28), we can derive
the generating function of̂Bln,q(x|λ ) as follows:

∞

∑
n=0

B̂ln,q(x|λ )
tn

n!
=

1
[2]q

∫

Zp

(1+ t)−λ y+xdµ−q(y)

=
(1+ t)λ

q+(1+ t)λ (1+ t)x.

(2.30)

By replacingt by et −1 in (2.30), we get

∞

∑
n=0

B̂ln,q(x|λ )
(et −1)n

n!
=

eλ t

q+eλ t
ext

=
1

qe−λ t +1
ext

=
1
[2]q

∞

∑
m=0

(−1)mλ mEm,q(−
x
λ
)
tm

m!
,

(2.31)

and
∞

∑
n=0

B̂ln,q(x|λ )
(et −1)n

n!
=

∞

∑
m=0

(
m

∑
n=0

B̂ln,q(x|λ )S2(m,n)

)
tm

m!
.

(2.32)
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Therefore, by (2.31) and (2.32), we obtain the following
theorem.

Theorem 9For m≥ 0, we have

(−1)mλ m

[2]q
Em,q(−

x
λ
) =

m

∑
n=0

B̂ln,q(x|λ )S2(m,n),

and

B̂lm,q(x|λ ) =
1
[2]q

m

∑
l=0

S1(m, l)(−1)l λ l El ,q

(
−

x
λ

)
.

Fork∈N, let us define theq-Boole polynomials of the
second kind with orderk as follows :

B̂l
(k)
n,q(x|λ )

=
1
[2]kq

∫

Zp

· · ·
∫

Zp

(−(λx1+ · · ·+λxk)+ x)n

×dµ−q(x1) · · ·dµ−q(xk).

(2.33)

Then we have

[2]kqB̂l
(k)
n,q(x|λ ) =

n

∑
l=0

S1(n, l)λ l (−1)l El ,q

(
−

x
λ

)
.

From (2.33), we can derive the generating function of

B̂l
(k)
n,q(x|λ ) as follows :

∞

∑
n=0

B̂l
(k)
n,q(x|λ )

tn

n!

=
1
[2]kq

∫

Zp

· · ·
∫

Zp

(1+ t)−(λ x1+···+λ xk)+xdµ−q(x1) · · ·dµ−q(xk)

=

(
(1+ t)λ

q+(1+ t)λ

)k

(1+ t)x

=

(
1

q(1+ t)−λ +1

)k

(1+ t)x

=
∞

∑
n=0

Bl(k)n,q(x|−λ )
tn

n!
.

(2.34)
Thus, by (2.34), we get

B̂l
(k)
n,q(x|λ ) = Bl(k)n,q(x|−λ ),(n≥ 0). (2.35)

Indeed,

(−1)n[2]q
Bln,q(x|λ )

n!
= (−1)n

∫

Zp

(
x+λy

n

)
dµ−q(y)

=
∫

Zp

(
−yλ − x+n−1

n

)
dµ−q(y)

=
n

∑
m=0

(
n−1
n−m

)∫

Zp

(
−yλ − x

m

)
dµ−q(y)

=
n

∑
m=1

(n−1
m−1

)

m!
m!
∫

Zp

(
−yλ − x

m

)
dµ−q(y)

= [2]q
n

∑
m=1

(
n−1
m−1

)
B̂lm,q(−x|λ )

m!
,

and

(−1)n[2]q
B̂ln,q(x|λ )

n!
=

n

∑
m=0

(
n−1
m−1

)∫

Zp

(
−x+ yλ

m

)
dµ−q(y)

= [2]q
n

∑
m=1

(
n−1
m−1

)
B̂lm,q(−x|λ )

m!
.
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