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Abstract: In this paper, we define and study a new class of analytic functions by using the concept of generalized close-to-convexity.
Coefficient results, Hankel determinant problem and some other interesting properties of this class are investigated.Results proved in
this paper may stimulate further research in this area.
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1 Introduction

Let A be the class of functions analytic in the open unit
discE = {z : |z|< 1} and be given by

f (z) = z+
∞

∑
n=2

anzn
. (1)

Let S⊂ A be the class of functions which are univalent
and alsoK,S∗,C be well known subclasses ofS which,
respectively, contain close-to-convex, starlike and convex
functions. For more details, we refer to [2,4,6, 8,9] and the
references therein.
Let Vk be the class of functionsf with bounded boundary
rotation. Paatero [19] showed that a functionf ∈A, f ′(z) 6=
0 belongs to the classVk if and only if

2π
∫

0

∣

∣ℜ
(z f′(z))′

f ′(z)

∣

∣dθ ≤ kπ ; z= reiθ
. (2)

It is geometrically obvious thatk≥ 2.
By Paatero representation theorem [19] for f ∈Vk, we can
write

(z f′(z))′

f ′(z)
= h(z),

where

h(z) =
(k

4
+

1
2

)

h1(z)

−
(k

4
− 1

2

)

h2(z),ℜhi(z)> 0, i = 1,2. (3)

The functionh, defined by (3) is said to belong to the
classPk, see [20]. Clearly P2 = P, whereP is the class of
functions with positive real part.
We note thatV2 = C and it is known [19] that Vk,
2≤ k≤ 4, consists entirely of univalent functions.
We now define the following.

Definition 1.Let f ∈ A and be locally univalent satisfying
the condition f′(z) 6= 0. Then f∈ Mm,k if there exists a
function g∈Vk,k≥ 2, such that, for z∈ E

2π
∫

0

∣

∣ℜ
f ′(z)
g′(z)

∣

∣dθ ≤ mπ , m≥ 2. (4)

The condition (4) is equivalent to the following condition
that

f ′(z)
g′(z)

∈ Pm,m≥ 2,g∈Vk. (5)

ClearlyM2,2 =K andM2,k = Tk is the class introduced and
studied in [12].
The following is a necessary condition for the functionsf
in the classMm,k.

Theorem 1.Let f ∈ Mm,k. Then, for allθ1 < θ2 and for all
0≤ r < 1, z= reiθ ,

θ2
∫

θ1

ℜ
{

1+
z f′′(z)
f ′(z)

}

dθ >−
(m+ k

2
−1

)

π . (6)
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Proof.From definition, it follows that

|argf ′(z)−argg′(z)| ≤ mπ
2

, g∈Vk. (7)

Let

F(r,θ ) = arg
{ ∂

∂θ
f (reiθ )

}

= argf ′(reiθ )+
π
2
+θ ,

and

G(r,θ ) = arg
{ ∂

∂θ
g(reiθ )

}

= argg′(reiθ )+
π
2
+θ .

Thus

|F(reiθ )−G(r,θ )| ≤ mπ
2

, (8)

and so, forθ1 < θ2

F(r,θ2)−F(r,θ1)

= [{F(r,θ2)−G(r,θ2)}+ {G(r,θ2)−G(r,θ1)}
+{G(r,θ1)−F(r,θ1)}]

<
mπ
4

+
(k

2
−1

)

π +
mπ
4

=
(m

2
+

k
2
−1

)

π ,

where we have used (8) and a necessary condition forg∈
Vk, see [1]. This proves (6).

Remark 1. From Theorem 1, we can interpret some
geometrical meaning forf ∈ Mm,k. For simplicity, let us
suppose that the image domain is bounded by an analytic
curveC1. At a point onC1, the outward drawn normal has
an angle arg{eiθ f ′(reiθ )}. Then it follows that the angle
of the outward drawn normal turns back at most
(

m
2 + k

2 −1
)

π .

Remark 2. Goodman [5] defines the classK(β ) of
function f as follows.
Let f ∈ A and f ′(z) 6= 0. Then, forβ ≥ 0, f ∈ K(β ) if and
only if, for z= reiθ , θ1 < θ2

θ2
∫

θ1

ℜ
(z f′(z))′

f ′(z)
dθ >−β π .

We note that

Mm,k ⊂ K
(m+ k

2
−1

)

, m,k≥ 2.

The functions inMm,k are univalent form+k≤ 4 and when
(m+ k)> 4, f ∈ Mm,k need not even be finitely valent.

2 Main Results

Theorem 2.From Remark 2 and the results given in [5]
for the class K(β ), we at once have:
Let f ∈ Mm,k. Then, for z= reiθ , 0≤ r < 1,

(i) | f ′(z)| ≤ m(1+r)
k
2

2(1−r)
k
2+2

,

(ii) | f (z)| ≤ m
2(k+2)

{(

1+r
1−r

) k
2+1−1

}

The function F0 ∈ Mm,k, defined as

F0(z) =
m

2(k+2)

[

(1+ z
1− z

) k
2−1−1

]

= z+
∞

∑
n=2

An(m,k)zn
, (9)

shows that these upper bounds are sharp.
(iii) |an| ≤ An(m,k), n≥ 2, where An(m,k) is defined by
(9), an is given by (1) andm+k

2 is an even integer. This
result is sharp for each n≥ 2.

We now deal with the arc length problem for the classMm,k
as follows.

Theorem 3.Let L(r, f ) denote the length of the image of
the circle|z|= r under f and let f∈ Mm,k.
Then, for0≤ r < 1,

L(r, f ) = O(1)
( 1

1− r

)m+k
2 , (r → 1),

where O(1) is a constant.

Proof. Since Mm,k ⊂ K(β1),β1 =
(

m+k
2 − 1

)

, and it is
known [5] that, forK(β1), there existsφ ∈C such that

∣

∣

∣arg
f ′(z)
φ ′(z)

∣

∣

∣≤ β1π
2

, β1 ≥ 0.

That is, f ∈ Mm,k implies that

f ′(z) = φ ′(z)hβ1(z),φ ∈C,h∈ P. (10)

From these observations and (10), we have

L(r, f )

=

2π
∫

0

|z f′(z)|dθ

=

2π
∫

0

|s(z)hβ1(z)|dθ , s= zφ ′ ∈ S∗,β1 =
(m+ k

2
−1

)

≤ 2π
( 1

2π

2π
∫

0

|s(z)|2dθ
) 1

2
( 1

2π

2π
∫

0

|h(z)|2β1dθ
) 1

2

≤C(m,k)
( 1

1− r

)β1+1

= O(1)
( 1

1− r

)m+k
2
, m,k≥ 2,

where we have used Schwarz inequality, subordination for
starlike functions and a result due to Hayman [8] for the
functionh∈ P. ⊓⊔
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We can deduce the rate of growth of the coefficients for
f ∈ Mm,k from Theorem 2 as:
Let f ∈ Mm,k and be given by (1). Then, forn≥ 2

an = O(1).n
(

m+k
2 −1

)

,

whereO(1) is a constant.

Theorem 4.Let f ∈ Mm,k and be given by (1). Then

an = O(1).n
1
2 ,(n→ ∞),

and O(1) is a constant depending only on m and k. The
function F0 ∈Mm,k, defined by (8), shows that the exponent
k
2 is best possible.

Proof.Since f ∈ Mm,k, there existsg∈Vk such that

f ′(z) = g′(z)H(z), H ∈ Pm,m≥ 2.

Set
F(z) = (z f′(z))′ = g′(z)h(z)H(z)zH′(z),

where(zg′(z))′ = g′(z)h(z). Now, by Cauchy Theorem, for
z= reiθ , we have

n2|an| =
1

2πrn+2

∣

∣

2π
∫

0

F(z)e−inθ dθ
∣

∣

≤ 1
2πrn+2

∣

∣

2π
∫

0

|g′(z){H(z)h(z)+ zH′(z)}|dθ . (11)

Forg∈Vk, it is known [1] that

g′(z) =

( s1(z)
z

) k
4+

1
2

( s2(z)
z

) k
4− 1

2

,s1,s2∈ S∗. (12)

Also, see [13,14], for H ∈ Pm, we have

(i) 1
2π

2π
∫

0
|H(z)|2dθ ≤ 1+(m2−1)r2

1−r2 , z= reiθ
,

and
(i)

1
2π

2π
∫

0

|zH′(z)|dθ ≤ m
1− r2 , z= reiθ

. (13)

Thus, on using (12) together with the well known [4]
distortion result fors1,s2 ∈ S∗ and Schwarz inequality, we
have

n62|an|

≤ 2
k
2−1

rn+1

( 1
1− r

) k
2−1

×
[

( 1
2π

2π
∫

0

|H(z)|2dθ
) 1

2
( 1

2π

2π
∫

0

|h(z)|2dθ
) 1

2

+
1

2π

2π
∫

0

|zH′(z)|2dθ

]

. (14)

We make use of (13) in (14) and this leads us to the
required result. The proof is complete.⊓⊔
Golusion [3] has shown that we can choose az1 = z1(r)
with |z1|= r such that, for any univalent functions(z)

max
|z|=r

|(z− z1)s(z)| ≤
2r2

1− r2 . (15)

Using similar technique of Theorem 4 with (15), we can
easily prove the following.

Theorem 5.Let f ∈ Mm,k and be given by (1.1). Then, for
k≥ 2

||an|− |an+1|| ≤ c(m,k)n
k
2−1

, (n→ ∞),

where c(m,k) is a constant.

Let f ∈A and be given by (1). TheqthHankel determinant
of f is defined forq≥ 1,n≥ 1 by

Hq(n) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

an an+1 . . . an+q−1

an+1 an+2 . . .
...

...
...

...
an+q−1 . . . . . . an+2q−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(16)

Hankel determinants play an important role in the study of
singularities and in the theory of power series with integral
coefficients (see, for example [2;pp. 320-335].
The problem of determining the rate of growth of
Hq(n) asn → ∞ for f belonging to certain subclasses of
analytic functions is well known, see [6,7.10-13, 15-18,
21,22].
For f ∈ S∗, Pommerenke solved this problem completely.
He showed that, iff ∈ S∗,then

Hq(n) = 0(1).n2−q
, n→ ∞

and the exponent(2− q)is best possible, see [22]. Noor
[15] generalized this result for close-to-convex functions.
We also refer to [16].
Noonan and Thomas [10] have shown that, for a really
meanp−valent functionsf ,

Hq(n) = O(1)

{

n2p−1
, q= 1, p>

1
4,

n2pq−q2
, q≥ 2, p≥ 2(q−1),

whereO(1) depends uponp,q and f and the exponent
(2pq−q2) is best possible.

For p= 1, Hayman[7] has shown thatH2(n) = o(1)n
1
2 as

n→ ∞ and this is best possible.
In [13], it was shown that , iff ∈VK , then

Hq(n) = O(1)

{

n
k
2−1

, q= 1

n
kq
2 −q2

, q≥ 2,k≥ 8q−10,

The exponent
(

kq
2 −q2

)

is best possible in some sense.

In this paper, we estimate the rate of growth of Hankel
determinant forf ∈ Mn,k.
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Theorem 6.Let f ∈ Mm,k and let the Hankel determinant
of f(z), for q≥ 2 be defined by (16). Then The O(1) is a
constant depending upon k,m,q and f .

To prove this theorem , we need the following known
lemmas, see [10]

Lemma 1. Let f ∈ A and be given by (1). Let the qth
Hankel determinant of f, for q ≥ 1, n ≥ 1, be defined by
(16). Then writing∆ j(n) = ∆ j(n,z1, f ),we have

Hq(n)

=

∣

∣

∣

∣

∣

∣

∣

∣

∆2q−1(n) ∆2q−3(n+1) . . . ∆q−1(n+q−1)
∆2q−3(n+1) ∆2q−4(n+2) . . . ∆q−2(n+q)

...
...

...
∆q−1(n+q−1) . . . . . . ∆q(n+2q−2)

∣

∣

∣

∣

∣

∣

∣

∣

,

where, with∆0(n,z1, f ) = an, we define for J≥ 1.

∆ j(n,z1, f ) = ∆ j−1(n,z1, f )−n∆ j−1(n+1,z1, f ) . . . (19)

Lemma 2.With x=
(

n
n+1y

)

,v≥ 0 and integer

∆ j(n+ v,x,z f′(z))

=
j

∑
k=0

(

j
k

)

yk (v− (k−1)n)
(n+1)k .∆ j−k (n+ v+ k,y, f (z))

We now prove Theorem 6.

Proof.We shall prove this result by using the differences
(17). Sincef ∈ Mm,k, there existsg∈Vu such that

f ′(z) = g′(z)H(z),

whereH ∈ Pm and, with(zg′(z))′ = g′(z)h(z),h ∈ Pk, we
have

F(z) =
(

z f′(z)
)′
= g′(z)

[

H(z)h(z)+ zH′(z)
]

Now, for j ≥ 0,z1 any non-zero complex, we consider
∣

∣∆ j (n,z1,F(z))
∣

∣

=
1

2πrn+ j

∣

∣

∣

∣

∫ 2π

0
(z− z1)

j (z f′(z)
)′

e−i(n+ j)θ dθ
∣

∣

∣

∣

≤ 1
2πrn+ j

∫ 2π

0
|(z− z1)| j ∣

∣g′(z)
∣

∣

∣

∣H(z)h(z)+ zH′(z)
∣

∣dθ .

We use (12) and (15) and distortion result forS∗ to have,
with k≥ 4 j −2,
∣

∣∆ j (n,z1,F(z))
∣

∣

≤
(

4
r

) k
4− 1

2

.
1

2πrn+ j

(

2r2

1− r2

) j (
r

1− r

) k
2+1−2 j

×
∫ 2π

0

∣

∣H(z)h(z)+ zH′θ
∣

∣dθ . (20)

Applying Schwarz inequality and using (13), we obtain

1
2π

2π
∫

0

∣

∣H(z)h(z)+ zH′(z)
∣

∣dθ

≤





1
2π

2π
∫

0

|H(z)|2dθ





1
2




1
2π

2π
∫

0

|h(z)|2dθ





1
2

+
1

2π

2π
∫

0

∣

∣zH′(z)
∣

∣dθ

≤ c1(m,k).
1

1− r
, (21)

wherec1(m,k) is constant.
From (18), (19) and Lemma 2, it follows that

∆ j(n,z1, f (z)) = O(1).n
k
2− j

, (22)

O(1) depends only onm,k and j.

We use similar argument due to Noonan and Thomas [10]
together with Lemma 1 to estimate the rate of growth of
Hq(n).

For q = 1, H1(n) = an = ∆0(n) and, from Theorem 4, it
follows that

H1(n) = O(1).n
k
2

Forq≥ 2, we have, from (20) and Lemma 1,

Hq(n) = O(1).nq{ h
2−(q−1)},k≥ 4(q−1)−2= 4q−6.

This gives us the required result.⊓⊔

As a special case, we note that

H2(n) = O(1).nk−2
,k≥ 2

Also, for k= 2, f ∈ Mm,2 and in this case

Hq(n) = O(1).n2q−q2
.

Theorem 7.Let f ∈ Mm,k then f maps|z| < R onto a
convex domain where R is the least positive root of

T(R) = R3− (r2+2r1)R
2− (2r1r2+ r2

1)R+ r2
1r2 = 0,(23)

where

r2 =
k−

√
k2−4
2

, r1 =
m−

√
m4−4
2

As a special case, when k= m, thenr1 = r2 and we have
R=

(

2−
√

3
)

r2.

c© 2015 NSP
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Proof.For f ∈ Mm,k, we can write

f ′(z) = g′(z)H(z), g∈Vk and H∈ Pm

. It is known that, for|z|< r1, ℜH(z)> 0, see [20].
Let α be any complex number such that|α|< r1.
Then

p(z) = H
( r2

1(2+α)

r2
1 +αz

)

= H ′(α)
(

1− |α|2
r2
1

z+ . . .

)

is analytic in|z|< r1 andℜp(z)> 0 for all |z|< r1. Hence,
by a result due to Nehari [9], we have
∣

∣

∣H ′(α)
(

1− |α|2
r2
1

)

∣

∣

∣≤ 2|H(α)|
r1

,

which implies that
∣

∣

∣

αH ′(α)

H(α)

∣

∣

∣≤ 2r1|α|
r2
1 −|α|2 . (24)

Sinceα is any complex number such that|α|< r1, we can
write the inequality (22) as

∣

∣

∣

z f′′(z)
f ′(z)

− zg′′(z)
g′(z)

∣

∣

∣≤ 2r1|z|
r2
1 −|z|2 .

Hence

ℜ
(z f′(z))′

f ′(z)
≥ ℜ

(zg′(z))′

g′(z)
− 2r1|z|

r2
1 −|z|2 .

Also, for g∈Vk, ℜ (zg′(z))′

g′(z) ≥ 0 for |z|< r2 =
k−
√

k2−4
2 .

Using Harnack Inequality, we can write

ℜ
(zg′(z))′

g′(z)
≥ r2−|z|

r2+ |z| .

Therefore

ℜ
(z f′(z))′

f ′(z)
≥ r2−|z|

r2+ |z| −
2r1|z|

r2
1 −|z|2

=
(r2−|z|)(r2

1−|z|2)−2r1|z|(r2+ |z|)
(r2+ |z|)(r2

1−|z|2)

=
T(|z|)

(r2+ |z|)(r2
1+ |z|2) ,

where, with|z| = R, T(R) is given by (21). We note that
T(0) = r2r2

1 andT1 < 0, soR∈ (0,1) exists.

Hence ℜ (z f′(z))′
f ′(z) > 0 for |z| < R, where R is the least

positive root ofT(R) = 0. This completes the proof.⊓⊔

As a special case, letm= k. In this casef ∈ Mk,k maps
|z|< (2−

√
3)r2 onto a convex domain.

Here

T(R) = R3−3r2R
2−3r2

2R+ r3
2

= (r2+R)(R2−4r2R+ r2
2).

That isR= (2−
√

3)r2. We note that, by taking

f ′(z)
g′(z)

=
1+ z
1− z

, g∈V2,

it can be shown that(2−
√

3) cannot be replaced by a
smaller constant.

Conclusion

We have used the concept of close-t-convexity to
introduce and investigate some new classes of analytic
functions. The rate of growth for Hankel determinant of
coefficients of these functions has been studied.
Arclength problem is also a part of our results. Several
applications our main results have been pointed out. The
ideas and techniques of this paper may motivate further
research in this field.
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