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Abstract: In this work, the effects of magnetic field and initial stresson plane waves propagation is investigated. The problem of
reflection and transmission of thermoelastic wave at a solid-liquid interface in presence of initial stress and magnetic field has been
investigated. In the context of Green-Lindsay theory of generalized, the problem has been solved. The boundary conditions applied at
the interface are (i) displacement continuity, (ii) Vanishing the tangential displacement, (iii) Continuity of normal force per unit initial
area, (iv) Tangential force per unit initial area must vanish, and (v) Continuity of temperature. The appropriate expressions to find the
amplitudes ratios for the three incidence waves (P-, SV, andT-wave) have been obtained. The reflection and transmitted coefficients for
the incident waves are computed numerically, considering the initial stress and magnetic field effect and presented graphically.
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1 Introduction

The dynamical problem of surface waves propagation in a
homogeneous and non-homogeneous elastic media are of
considerable importance in earthquake, engineering, and
seismology on account of the occurrence of
non-homogeneities in the earth’s crust, as the earth is
made up of different layers. During the last five decades,
wide spread attention has been given to thermoelasticity
theories which consider finite speed for the propagation
of thermal signal. Initial stresses develop in the medium
due to various reasons, such as the difference of
temperature, process of quenching shot pinning and cold
working, slow process of creep, differential external
forces, and gravity variations. The Earth is under high
initial stress and therefore, it is of great interest to study
the effect of these stresses on the propagation of elastic
waves. Alot of systematic studies have been made on the
propagation of elastic waves. [1] showed that the acoustic
propagation under initial stresses would be fundamentally
different from that under stress free state. [2] reported a
new theory based on a modified Fourier’s law of heat
conduction with one relaxation time and subsequently a

more rigorous theory of thermoelasticity was formulated
by [3] introducing two relaxation times. These
non-classical theories are often regarded as the
generalized dynamic theory of thermoelasticity. Various
problems have been investigated and discussed in the
light of these two theories and the studies reveal some
interesting phenomena. Problem on wave propagation
phenomena in coupled or generalized thermoelasticity is
discussed by [4]. [5] discussed the reflection of SV-wave
in a generalized thermoelastic medium. [6] investigated
the reflection of generalized magneto-thermo-viscoelastic
waves at the boundary of a semi-infinite solid considering
that the free surface of the solid be adjacent to vacuum
and the solid is subjected to a constant temperature and
magnetic field. [7] investigated the reflection and
refraction of thermoelastic waves at an interface of two
semi-infinite media in welded contact, in the context of
generalized thermoelasticity with two relaxation times. A
survey article of various representative theories in the
range of generalized thermoelasticity is prepared by [8].
[9] investigated solution of the field equations governing
small motions of a micropolar viscoelastic solid
half-space with stretch to study the reflection and
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transmission at the interface between a liquid and a
micropolar viscoelastic solid with stretch. Problem on
reflection and refraction in coupled or generalized
thermoelasticity have been a topic of research for various
authors as [10]. [11] discussed the effects of applied
magnetic field on reflection and refraction of shear waves
in two semi-infinite elastic media having viscoelasticity
of general linear type and the values of reflection and
transmission coefficients are derived for two specific
orientations of the magnetic field. The generalized
magneto-thermoelasticity model with two relaxation
times in an isotropic elastic medium under the effect of
reference temperature on the modulus of elasticity is
pointed out by [12]. Estimation on magnetic field effect in
an elastic solid half-space under thermoelastic diffusionis
discussed and the expressions for the reflection
coefficients for the four reflected waves are obtained by
[13]. The impact of magnetic field, initial pressure, and
hydrostatic initial stress on reflection of P and SV waves
considering a Green Lindsay theory is discussed by [14].
[15] studied P waves propagation in an isotropic
homogeneous solid half-space under the influence of
magnetic field, thermal relaxation time and rotation with
voids. [16] illustrated reflection of P and SV waves from
stress-free surface elastic half-space under influence of
magnetic field and hydrostatic initial stress without
energy dissipation in the context of the Green and Naghdi
theory of type III. [17] studied relaxation times and
magnetic field sense effects on the reflection of
thermoelastic waves phenomena from isothermal and
insulated boundaries of a half space. [18] estimated
Maxwell’s stresses effect on reflection and transmission
of plane waves between two thermo-elastic media in the
context of GN Model. [19] studied the problem of
reflection and refraction of thermo-elastic wave under
normal initial stress at a solid-solid interface under
perfect boundary condition. [20] pointed out the re?ection
and refraction at an interface between two dissimilar
thermally conducting viscous liquid half-spaces. [21]
studied the radial deformation and the corresponding
stresses in a homogeneous annular fin for an isotropic
material. Recently, [22] investigated rotational and voids
effects on the reflection of P waves from stress-free
surface of an elastic half-space under magnetic field,
initial stress and without energy dissipation. Reflection
and refraction of P-, SV- and thermal waves, at an initially
stressed solid-liquid interface in generalized
thermoelasticity has been discussed by Singh and
Chakraborty [23]. [24] investigated the calculation of
bulk acoustic wave propagation velocities in trigonal
piezoelectric smart materials. [25] investigated SV-waves
incidence at interface between solid-liquid media under
magnetic field, initial stress and two thermal relaxation
times. [26] pointed out Green Lindsay model on reflection
and refraction of p- and SV-waves at interface between
solid-liquid media presence in magnetic field and initial
stress. [27] investigated the problem of reflection and
refraction of thermoelastic waves at a magnetized

solid-liquid interface in presence of initial stress in the
context of CT (Classical theory).

In this paper, the plane waves propagation is
investigated under influence of magnetic field and initial
stress. The problem of reflection and transmission of
thermoelastic wave at a solid-liquid interface in presence
of initial stress and magnetic field considering GL theory
of generalized has been solved. The boundary conditions
at the interface are applied to solve the problem. The
appropriate expressions to find the amplitudes ratios for
the three incidence (p-, SV-, and T-waves) have been
obtained to calculate the reflection and transmitted
coefficients and computed numerically, considering the
initial stress and magnetic field effect and displayed
graphically.

2 Formulation of the problem

We consider a plane interface between solid half-space
homogeneous an isotropic elastic and liquid haf-space are
with a primary temperatureT0 and magnetic field acts on
z-direction. Both media placed under different initial
stress. A plane waves are incident in medium M at the
plane interface which reflected top-wave (dilatational
wave), SV-wave (rotational wave) and thermal wave
(dilatational wave). Rest of the wave continues to travel in
the other mediumM′ after refraction, asp-wave and one
thermal wave as shown in (Fig. 1). We assume a Cartesian
coordinate system oxyz with origin ”o” on the plane y =
0. Since we consider a two-dimensional problem, we
restrict our analysis to plane strain parallel to oxy-plane.
Hence all the field variables depend only on x, y and time
t. For easy reference we follow a convention: All
quantities in mediumM′ except initial stress that acts only
in a solid media are represented unprimed whereas
corresponding quantities in mediumM′ are represented as
primed. The initial stress components in medium M are
shown in Fig. 2. where, the initial stress affects on the
medium M only.

3 Basic equations

1.The dynamical equations of motion the rotating frame
of reference for a plane strain under initial stress in
absence of heat source, given by [1], taking into
account the presence of Lorenz’s force are

∂S11
∂x + ∂S12

∂y −P ∂ω̄
∂y +Fx = ρ ∂ 2u

∂ t2
,

∂S21
∂x + ∂S22

∂y −P ∂ω̄
∂x +Fy = ρ ∂ 2v

∂ t2
.

(1)

Where,
−
ω = 1

2

(

∂v
∂x −

∂u
∂y

)

.

Fx andFy are components of the magnetic field in x
and y directions, respectively.
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Fig. 1: Geometry of the problem.

Fig. 2: Components of initial stress on the solid medium.

2.The stress-strain relations with incremental isotropy
are given byBiot [1]:

S11= (λ +2µ +P)exx +(λ +P)eyy − γ(T + τ1
∂T
∂ t

)

S22= λ exx +(λ +2µ)eyy − γ(T + τ1
∂T
∂ t

) (2)

S12= 2µexy

3.The incremental strain- components are given byBiot
[1]

exx =
∂u
∂x

, eyy =
∂v
∂y

, exy =
1
2
(

∂u
∂y

+
∂v
∂x

). (3)

4.The modified heat conduction equation is:

K▽
2T = ρCe(

∂T
∂ t

+ τ0
∂ 2T
∂ t2 )

+T0γ[
∂
∂ t

(
∂u
∂x

+
∂v
∂y

)+ τ0δi j
∂ 2

∂ t2 (
∂u
∂x

+
∂v
∂y

)] (4)

where,Ce is specific heat per unit mass,ei j is strain
components, K is thermal conductivity, P is initial
stress,s11,s22,s12 is incremental stress components,λ
andµ are Lame’s constants,T0 is natural temperature

of the medium,δi j is Krnecker delta, T is absolute
temperature of the medium,τ0 and τ1 are thermal
relaxation times,αt is coefficient of linear thermal
expansion,ui is components of the displacement
vector,ω is magnitude of local rotation.

5.Taking into account the absence of displacement
current, the linearized Maxwell equations governing
the electromagnetic fields for a slowly moving solid
medium having perfect electrical conductivity are

curl
−→
h =

−→
J , curl

−→
E =−µe

∂
−→
h

∂ t
, (5)

div
−→
h = 0, div

−→
E = 0

where

−→
h = curl(−→u ×−→

H ),
−→
F =

−→
J ×−→

B
−→
H =

−→
H0+

−→
h (x,y, t),

−→
H0 = (0,0H).

Using equation (5), we obtain:

Fx = µeH2(
∂ 2u
∂x2 +

∂ 2v
∂x∂y

)

Fy = µeH2(
∂ 2u

∂x∂y
+

∂ 2v
∂y2 )

(6)

where,
−→
B is magnetic induction vector,

−→
E is electric

intensity vector,
−→
F is Lorenz’s body forces vector,

−→
h

is perturbed magnetic field vector,
−→
H is magnetic field

vector,
−→
H0 is primary constant magnetic field vector,−→

J is electric current density vector,µe is magnetic
permeability.
Again Maxwell’s stress equation can be given in the
form as:

τi j = µe[Hih j +H jhi −Hkhkδi j] (7a)

Whereτi j is Maxwell’s stress tensor, which reduces to:

τ11 = τ22 = µeH2(
∂u
∂x

+
∂v
∂y

), τ12 = 0. (7b)

4 Solution of the problem

Substituting Eqs. (2), (3) and (7) into (1), we get:
(

λ +2µ +P+ µeH2
) ∂ 2u

∂x2 +
(

λ + P
2 + µ + µeH2

) ∂ 2v
∂x∂y

+
(

µ + P
2

) ∂ 2u
∂y2 = ρ ∂ 2u

∂ t2
+ γ

(

∂T
∂x + τ1

∂ 2T
∂x∂ t

)

,

(8)

(

µ − P
2

) ∂ 2v
∂x2 +

(

λ + P
2 + µ + µeH2

) ∂ 2u
∂x∂y +

(

2µ +λ + µeH2
) ∂ 2v

∂y2 =

ρ
(

∂ 2v
∂ t2

)

+ γ
(

∂T
∂y + τ1

∂ 2T
∂y∂ t

)

.

(9)
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To separate the dilatational and rotational components of
strain, we introduce displacement scalar and vector
potentialsΦ andΨ defined by the following relations:

u =
∂Φ
∂x

− ∂Ψ
∂y

, v =
∂Φ
∂y

+
∂Ψ
∂x

(10)

where,
−→
Ψ = (0,0,−Ψ).

Substituting Eq. (10) into Eq.(8), we obtain:

▽
2Φ =

ρ
(λ +2µ +P+ µeH2)

(
∂ 2Φ
∂ t2 )

+
γ

(λ +2µ +P+ µeH2)
(T + τ1

∂T
∂ t

). (11)

▽
2Ψ =

ρ
(µ + P

2 )
[
∂ 2Ψ
∂ t2 ] (12)

Also, from Eqs. (9) and (10), we get:

▽
2Φ =

ρ
(λ +2µ + µeH2)

(
∂ 2Φ
∂ t2 )

+
γ

(λ +2µ + µeH2)
(T + τ1

∂T
∂ t

). (13)

▽
2Ψ =

ρ
(µ − P

2 )
[
∂ 2Ψ
∂ t2 ] (14)

Where, ▽2 = ∂ 2

∂x2 + ∂ 2

∂y2 (Laplace operator). Using
Eq.(10), the temperature Eq. (4) tends to the following
form:

K▽
2T = ρCe(

∂T
∂ t

+ τ0
∂ 2T
∂ t2 )

+T0γ
∂
∂ t

(1+ t0δi j
∂
∂ t

)▽2Φ (15)

5 Solution using GL model.

In Green-Lindsay theory:τ1 ≥ τ0 > 0 andδ ji = 0, Eqs.
(11) and (14) can be rewritten as:

▽
2Φ =

1

C2
1(1+RH)

∂ 2Φ
∂ t2 +

γ
ρC2

1(1+RH)
(T + τ1

∂T
∂ t

),

(16)

▽
2Ψ =

1

C2
2

[
∂ 2Ψ
∂ t2 ] (17)

whereRH =
C2

A
C2

1
,C2

1 = λ+2µ+P
ρ ,C2

2 =
µ− P

2
ρ ,C2

A = µeH2

ρ .

Here, RH ,C1,C2 represent the magnetic sense (Alfven
speed), velocities of isothermal dilatational and rotational

waves respectively, in medium M.
Using GL theory, Eq. (15) can be written as:

K▽
2T = ρCe(

∂T
∂ t

+ τ0
∂ 2T
∂ t2 ) + T0γ

∂
∂ t

(▽2Ψ). (18)

Eliminating T from Eqs. (16) and (18), we obtain a fourth
order differential equation in terms ofΨ as:

T = (1+ τ1
∂
∂ t

)−1[
ρC2

1(1+RH)

γ
▽

2Φ − ρ
γ
(

∂ 2Φ
∂ t2 )], (19)

then

C2
3(1+RH)▽

4Φ − [(1+RH + εT )
∂
∂ t

+((1+RH)τ0

+εtτ1+
C2

3

C2
1

)
∂ 2

∂ t2 ]▽
2Φ +

1

C2
1

(1+ τ0
∂
∂ t

)
∂ 3Φ
∂ t3 = 0

(20)

where,C3
2 = K

ρCe
,εT = T0γ2

ρ2CeC2
1

is thermoelastic coupling

constant of the solid medium M.
We seek the solutions forΦ, Ψ and T in the form:

Φ = f (y)exp[ik(x− ct)], (21a)

Ψ = g(y)exp[ik(x− ct)], (21b)

T = h(y)exp[ik(x− ct)], (21c)

where, k is wave number,ω is frequency,υ is phase
speed,c = ω

k . Since Eq. (21) is a solution of Eq. (20), it
must satisfy Eq. (21).
Putting Eq. (21a) in (20), we get,

C2
3(1+RH)[−k4 f +

∂ 4 f
∂y4 −2k2 ∂ 2 f

∂y2 ]− [(1+RH + εT )

+(ik3c f (y)− ikc
∂ 2 f
∂y2 )+((1+RH)τ0+εtτ1

C2
3

C2
1

)(K4C2 f (y)

− k2c2 ∂ 2 f
∂y2 )]+

1

C2
1

(( f (y)ik3c3)+ τ0( f (y)k4c4) = 0

(22)

Which tends to:

(1+RH)
∂ 4 f
∂y4 +[−2k2(1+RH)+ ikc

(1+RH + εT )

C2
3

+ k2c2
((1+RH)τ0+ εtτ1+

C2
3

C2
1
)

C2
3

]
∂ 2 f
∂y2 +[k4(1+RH)

− ik3c
(1+RH + εT )

C2
3

− k4c2
((1+RH)τ0+ εtτ1+

C2
3

C2
1
)

C2
3

+
ik3c3

C2
1C2

1

((1− iτ0kc)− C2
1

C2 (1+RH + εt))] f = 0 (23)
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Eq. (23) being a fourth order differential equation inf (y),
the solution gives four values off (y) and Eq. (21a)
becomes

Φ =

[

(A1exp(ikm1y)+ (A2exp(ikm1y))
+((A3exp(ikm2y)+ (A4exp(ikm2y))

]

exp[ik(x−ct)]

(24)
Wherem1 =

√

q2c2−1, m2 =
√

p2c2−1

p2
,q2 =

1

2c2
1c2

3

[{c2
1(τ0(1+RH)+ εT τ1)

+ c2
3+

i(1+RH + εT )c2
1

ω
}±

√
N] (25)

N = [c2
1(τ0(1+RH)+ εT τ1)+ c2

3

+
i(1+RH + εT )c2

1

ω
]2

− 4i(1+RH)(1− iωτ0)c2
1c2

3

ω
(26)

Using Eq. (21b) in (17), we get

∂ 2g
∂y2 + k2(

c2

c2
2

−1)g = 0 (27)

Eq. (27) suggests that the solution yields two values of
g(y), and Eq. (21b) can be written as

Ψ = [A5exp(ikm3y)+A6exp(−ikm3y)]exp[ik(x− ct)]
(28)

Where

m3 =

√

( c2

c2
2
−1) The constantsAi(i = 1,2,3,4,5,6) in

pairs represent the amplitudes of incident and reflected
thermal,P− and SV-waves respectively. Substituting Eqs.
(24) and (21c) in Eq. (16), we get

T =
ρ
γτ

[

b1(A1exp(ikm1y)+ (A2exp(ikm1y))
+b2((A3exp(ikm2y)+ (A4exp(ikm2y))

]

×

exp[ik(x− ct)] (29)

Where

τ = (1− iωτ1), b1 = ω2(1− (1+RH)q
2c2

1),

b2 = ω2(1− (1+RH)p2c2
1).

Setting µ = P = 0 in Eqs. (1)-(4) we obtain the basic
equations for a non-viscous liquid medium in presence of
body forces and using them, we get displacement
equations and temperature field equation, valid for the
liquid mediumM′. The equations are as follows:

(λ ′+ µ ′
eH ′2)

∂ 2u′

∂x2 +(λ ′+ µ ′
eH ′2)

∂ 2v′

∂x∂y
=

ρ ′ ∂ 2u′

∂ t2 + γ ′(
∂T ′

∂x
+ τ ′1

∂ 2T ′

∂x∂ t
), (30)

(λ ′+ µ ′
eH ′2)

∂ 2u′

∂x∂y
+(λ ′+ µ ′

eH ′2)
∂ 2v′

∂y2 =

ρ ′ ∂ 2v′

∂ t2 + γ ′(
∂T ′

∂y
+ τ ′1

∂ 2T ′

∂y∂ t
), (30)

k′▽2T ′ = ρ ′C′
e(

∂T ′

∂ t
+τ ′0

∂ 2T ′

∂ t
)+T ′

0γ ′
∂
∂ t

(▽2Φ ′). (31)

The primes have been used to designate the corresponding
quantities in the liquid mediumM′ as already been defined
in case of solid mediumM.
Taking

u =
∂Φ ′

∂x
, v =

∂Φ ′

∂y
(32)

we get

▽
2Φ ′ =

1

C′2
1 (1+R′

H)

∂ 2Φ ′

∂ t2

+
γ ′

ρ ′C′2
1 (1+R′

H)
(1+ τ ′1

∂
∂ t

)T ′
, (33)

K′
▽

2T ′ = ρ ′C′
e(

∂T ′

∂ t
+τ ′0

∂ 2T ′

∂ t2 )+T ′
0γ ′

∂
∂ t

(▽2Φ ′) (34)

Solving Eqs. (33) and (34) and proceeding exactly in a
similar way as in solid mediumM, we get the appropriate
solution forΦ ′ andT ′ as

Φ ′ = [A′
2exp(ikm′

1y)+A′
4exp(ikm′

2y)]exp[ik(x− ct)],
(35)

T ′ =
ρ ′

γ ′τ ′
[b′1A′

2exp(ikm′
1y)

+ b′2A′
4exp(ikm′

2y)]exp[ik(x− ct)], (36)

where

τ ′ = (1− iωt ′1),b
′
1 = ω2(1− (1+R′

H)q
′2c′21 ),

b′2 = ω2(1− (1+R′
H)P

′2c′21 ). (37)

The constantsA′
2 and A′

4 represent the amplitudes of
refracted thermal andp−waves, respectively.

6 Boundary conditions

1.Normal displacement is continuous at the interface,
i.e.v = v′. This leads to

∂Φ
∂y

+
∂Ψ
∂x

=
∂Φ ′

∂x
. (38)

Using Eqs. (24), (28) and (35) in the above continuity
relation, we get,

m1A1−m1A2+m2A3−m2A4+A5+A6

−m′
1A′

2−m′
2A′

4 = 0 (39)
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2.Tangential displacement must vanish at the interface
i.e. u = 0.
This leads to∂Φ

∂x − ∂Ψ
∂y = 0.

Using Eqs. (24) and (28) in the above boundary
condition, we get

A1 + A2 + A3 + A4 − m3A5 + m3A6 = 0 (40)

3.Normal force per unit initial area must be continuous
at the interfacei.e.▽ fy = ▽ f ′y
This leads tps22+ τ22 = s′22+ τ ′22 Using Eqs. (2), (3)
and (7) for medium M and their corresponding
equations for mediumM′ we get, with the help of
Eqs. (10) and (32),

(λ + µeH2)(
∂ 2Φ
∂x2 +

∂ 2Φ
∂y2 )+2µ(

∂ 2Φ
∂y2 +

∂ 2Ψ
∂x∂y

)

− γ(T + τ1
∂T
∂ t

) =

(λ ′+ µ ′
eH ′2)(

∂ 2Φ ′

∂x2 +
∂ 2Φ ′

∂y2 )− γ ′(T ′+ τ1
∂T ′

∂ t
) (41)

Substituting Eqs. (24), (28), (29), (35) and (36) in the
above equation, we get,

[−(2+β )+ c2(
1

c2
2

−β q2)](A1+A2)+ [−(2+β )

+ c2(
1

c2
2

−β p2)](A3+A4)+ (2+β )m3(A5−A6)

−ρ∗(1+m2
3)(A

′
2+A′

4) = 0 (42)

where,ρ∗ = ρ ′
ρ and β = P

ρc2
2

4.Tangential force per unit initial area must vanish at the
interfacei.e.▽ fx = 0
This leads tos12+Pexy+ τ12 = 0
Using Eqs. (2), (3), (7), (10), (24) and (28) in the above
equation, we get,

m1(A1−A2)+m2(A3−A4)−
1
2
(m2

3−1)(A5−A6) = 0

(43)
5.Temperature must be continuous at the interface

i.e.,T = T ′. Using Eqs. (29) and (36) and simplifying,
we get

(1− (1+RH)q
2c2

1)(A1+A2)

+ (1− (1+RH)p2c2
1)(A3+A4)

− ρ∗

γ∗τ∗
[(1− (1+R′

Hq′2c′21 )A
′
2)

+ (1− (1+R′
H)p′2c′21 )A

′
4] = 0 (44)

where,γ∗ = γ ′
γ andτ∗ = τ ′

τ .

7 Equations for the reflection and refraction
coefficients

To consider the reflection and refraction of a
thermoelastic plane wave which is incident at the
solid-liquid interface aty = 0 making an angleθ with the
y-axis, we have three different cases.

Case I:For p-wave incidence, we putc = p−1cosesθ and
A1 = A5 = 0.

Case II:For thermal wave incidence, we put
c = q−1cosesθ andA3 = A5 = 0.

Case III:For SV-wave incidence, we putc = c2cosesθ and
A1 = A3 = 0.

From Eqs. (39), (40) and (42)-(44) we get a system of five
non-homogeneous equations for a thermoelastic plane
wave incident,

5

∑
i=1

ai jZ j = yi, ( j = 1,2, ...5) (45)

where

a11=−m1,a12=−m2,a13= 1,a14 =−m1,a15 =−m2,

a22= a21 = 1,a23= m3,a24 = a25= 0,

a31= [−(2+β )+C2(
1

C2
2

−β q2)],

a32= [−(2+β )+C2(
1

C2
2

−β q2)],

a33=−(2+β )m3,a34 = a35=−ρ∗(1+m2
3),a41 =−m1,

a42=−m2,a43=−0.5(m2
3−1),a44= a45= 0,

a51= (1− (1+RH)q
2c2

1),a52 = (1− (1+RH)p2c2
1),

a53= 0,a54 =− ρ∗

ω∗τ∗
(1− (1+R′

H)q
′2c′21 ),

a55=− ρ∗

ω∗τ∗
(1− (1+R′

H)p′2c′21 )

where, Z j( j = 1,2...5)are the ratios of amplitudes of
reflected thermal, p-, SV-waves and refracted thermal,
p-waves to that of incident wave respectively.
For the three particular cases, we get,

(I)For incident p-wave:

y1 = a12, y2 =−a22, y3 =−a32, y4 = a42,

y5 =−a52,

Z1 =
A2

A3
, Z2 =

A4

A3
, Z3 =

A6

A3
, Z4 =

A′
2

A3
,

Z5 =
A′

4

A3
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Fig. 3: Variation of the amplitudeszi(1,2, ...5) with the angle of incidence of p-wave for variation of magnetic field: H =
0.1,0.2,0.3,0.4,P = 1.1(10)11-,P = 0.....

Fig. 4: Variation of the amplitudeszi(1,2, ...5) with the angle of incidence of p-wave for variation of initial stress: P =
(1.1,1.2,1.3,1.4)(10)11,H = 0.3-,H = 0.....
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Fig. 5: Variation of the amplitudeszi(1,2, ...5) with restpect to(θ ,H) of p-wave with and without variation of initial stress.

(II) For incident thermal wave:

y1 = a11, y2 =−a21, y3 =−a31, y4 = a41,

y5 =−a51,

Z1 =
A2

A1
, Z2 =

A4

A5
, Z3 =

A6

A5
, Z4 =

A′
2

A5
,

Z5 =
A′

4

A5

(III) For incident SV-wave:

y1 = a13, y2 =−a23, y3 =−a33, y4 = a43,

y5 =−a53,

Z1 =
A2

A5
, Z2 =

A4

A5
, Z3 =

A6

A5
, Z4 =

A′
2

A5
,

Z5 =
A′

4

A5

8 Numerical results and discussion.

For a view to illustrate the numerical analysis of the
expressions of the reflection and refraction coefficients,
we have used the data for crust as solid medium following
Choi and Gurnis [28] and water as liquid medium.

For solid medium (M crust)

λ = µ = 3×109N.M−2
, α = 1.0667×10−5K−1,

Ce = 1100J.Kg−1
.K−1

, ρ = 2900Kg.M−3
,

k = 3W.M−1
.K−1

For liquid medium ( M′ water)

λ ′ = µ ′ = 20.4×109N.M−2
, α ′ = 69×10−6K−1,

C′
e = 4187J.Kg−1

.K−1
, ρ ′ = 1000Kg.M−3

,

k′ = 0.6W.M−1
.K−1

Taking into considerationτ0 = 3k
ρCeC2

1
,τ ′0 = 3k′

ρ ′C′
eC′2

1
while

τ1,τ ′1 have been taken to be of the same order (about 1.5
times) ofτ0,τ ′0,ω = 7.5×1013,T0 = 3000k. [29].
Figs. 3-5, 6-8 and 9-11 show the amplitudes ratios
variation with the angle of incident p-wave, Twave and
SV-wave, respectively.

Figs. 3 and 5 display the variation of the amplitudes
ratios Zi = (1,2, ...,5) with the angle of incidence of
p-wave for variation of magnetic field with and without
initial stress. It is appear that the amplitudes of the
reflected T-wave, refracted T- and p-waves start from their
maximum values and decreases to tend zero atθ = 90o ,
amplitude ratio of reflected p-wave tends to the unity, on
the other hand, the reflection coefficient for the reflected
SV-wave equal zero atθ = 0o,90o, increases to arrive to
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Fig. 6: Variation of the amplitudeszi(1,2, ...5) with the angle of incidence of thermal-wave for variation ofmagnetic field:H =
0.1,0.2,0.3,0.4,P = 1.1(10)11-,P = 0.....

Fig. 7: Variation of the amplitudeszi(1,2, ...5) with the angle of incidence of thermal-wave for variation ofinitial stress:P =
(1.1,1.2,1.3,1.4)(10)11,H = 0.3-,H = 0.....
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Fig. 8: Variation of the amplitudeszi(1,2, ...5) with restpect to(θ ,H) of thermal-wave with and without variation of initial stress.

Fig. 9: Variation of the amplitudeszi(1,2, ...5) with the angle of incidence of SV-wave for variation of magnetic field: H =
0.1,0.2,0.3,0.4,P = 1.1(10)11-,P = 0.....
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Fig. 10: Variation of the amplitudeszi(1,2, ...5) with the angle of incidence of SV-wave for variation of initial stress:P =
(1.1,1.2,1.3,1.4)(10)11,H = 0.3-,H = 0.....

its maximum value and then decreases with the increasing
of angle of incidence. Physically, we concluded that the
reflected and transmitted T- and p-waves start from their
maximum values and tend to zero for T-waves, refracted
T- and p-waves that indicate to the interruption of them at
the maximum values of the angle of incidence but
reflected p-wave arrives to unity for the maximum angle
of incidence, also, the reflected SV-wave starts and arrives
to zero at the minimum and maximum values ofθ that
indicate to the creating of the reflection coefficient if
θ = 0o and interrupted atθ = 90o.
With the variation of the magnetic field in the presence or
absence of initial stress, it is seen that|Z2| decrease with
an increasing of the magnetic field parameter but|Z3|,|Z4|
and |Z5| increase,|Z1| increase with the increasing of
magnetic field in the presence of initial stress but
decreases if the initial stress absence. It is shown that if
the initial stress is absence,|Z1|,|Z2| and |Z5| larger than
the correspondence in the presence of initial stress, vice
versa in|Z3| and|Z4|.
Fig. 4 plots the amplitudes ra:os with the angle of
incidence and variation of the initial stress in the presence
or absence of the magnetic field. It is obvious that|Z1|
and |Z3| increase with the increased values of the initial
stress but|Z2|,|Z4| and |Z5| decrease, also, we concluded
that the absence of the magnetic field make small
interruption on|Z1|,|Z2|,|Z3| and|Z4| but additional factor
on |Z5|.

From Figs. 6-8 that the amplitudes of the reflected
p-wave, refracted T- and SV-waves start from their
maximum values and decreases to tend zero atθ = 90o ,
amplitude ratio of reflected T-wave tends to the unity, on
the other hand, the reflection coefficient for the reflected
SV-wave equal zero atθ = 0o,90o, increases to arrive to
its maximum value and then decreases with the increasing
of angle of incidence. Figs. 6 and 8 display the variation
of the amplitudes ratiosZi = (1,2, ...,5) with the angle of
incidence of T-wave for variation of magnetic field with
and without initial stress. It is shown that|Z1|, |Z2| and
|Z5| decrease with an increasing of magnetic field in the
presence and absence of initial stress,|Z3| increases but
Z4|increases in the presence of initial stress and decreases
if the initial stress absence. Also, it is clear that|Z1|, |Z2|,
|Z3| and |Z5| in the presence of initial stress larger than
their corresponding in the absence of initial stress, that
indicate to the negative effect of the initial stress on the
amplitudes ratios but a positive factor on|Z4|.
Fig. 7 shows the amplitudes ratios with the angle of
incidence and variation of the initial stress in the presence
or absence of the magnetic field. It is appear that|Z1| and
|Z3| increase with the increased values of the initial stress
but |Z2|, |Z4| and |Z5| decrease, also, we concluded that
the absence of the initial stress makes small interruption
on |Z1|, |Z3| and|Z4| but an additional factor on|Z2| and
|Z5|.
Finally, for the incidence SV-wave, Figs. 9-11 display the
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Fig. 11: Variation of the amplitudeszi(1,2, ...5) with restpect to(θ ,H) of SV-wave with and without variation of initial stress.

varia:on of the amplitudes ratiosZi = (1,2, ...,5) with the
angle of incidence of SV-wave for variation of magnetic
field and initial stress. It is shown that|Z1|,|Z2|,|Z4| and
|Z5| start from their maximum values arriving to their
minimum values if θ = 90o. It is shown that the
amplitudes|Z1|,|Z2|,|Z4| and |Z5| increase slight with an
increasing of magnetic fieldH but |Z3| decreases, also, we
concluded that if the initial stress neglected, the absolute
values of the amplitudes take large values comparing with
the corresponding values in the presence of initial stress.
From Fig. 10, it is obvious that the absolute values of the
reflection coefficients ratios except|Z3| and|Z5| decrease
slight with an increasing of initial stress.

9 Concluding remarks.

We model the effect of initial stress, and magnetic field on
reflection and refraction of a plane waves at a solid-liquid
interface under perfect boundary conditions. The waves
amplitudes ratios with initial stress and magnetic field

with the angle of incidence are obtained in the framework
of GL theory, discussed numerically and illustrated
graphically.
The following conclusions can be made:

1.The reflected and refracted amplitudes depend on the
angle of incidence, initial stress and magnetic field,
the nature of this dependence is different for different
reflected waves.

2.The initial stress and magnetic field play a significant
role and the effect has the inverse trend for the reflected
and transmitted waves.

Finally, it is observed that the reflection and refraction
coefficient is strongly appear in the phenomena that has a
lot of applications, especially, in Seismic waves,
Earthquakes, Volcanoes, and Acoustics.
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