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Abstract: Bessel type functions (BTFs), which are one of the types of exponential type functions (ETFs), are used usually as basis
functions in the multi-center atomic and molecular integrals to better understand physical and chemical properties ofmatter. As a
general rule, the most promising approach for the calculation of multi-center integrals appears to be the called the Fourier transform
method (FTM) where multi-center integrals are transformedinto inverse Fourier integrals. In this approach, basis functions have not
simplicity to make mathematical operations, but their Fourier transforms are easier to use. In this work, with the help of FTM and
some properties of Bessel functions, we present new mathematical results for the Fourier transform of normalized BTFs in terms of
Gegenbauer polynomials and hypergeometric functions. Moreover, we compare mathematical results for new equations ina table and
other details of evaluation method are discussed.
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1 Introduction

Recently, there is an important interest to the some types
of bessel functions and their mathematical applications
that are most frequently used in solving various problems
arising in natural sciences (mathematics, physics,
mechanics, astronomy, engineering, etc.). Some of these
recent researches can be given in the references: [1,2,3,
4]. BTFs are one of the types of ETFs which are first
introduced by Filter and Steinborn [5]. In the solution of
molecular integrals, multi-center molecular integrals have
to be computed inab initio quantum chemical linear
combination of atomic orbitals (LCAO) and multi-center
calculations. It is advantageous to use a basis set of BTFs
have properties of ETFs and, hence, allow to describe
correctly the nuclear cusps and the large-distance
behavior of the atomic wavefunctions [6]. In this work,
we will focuse on the BTFs which are containing bessel
functions actually. In the studies of mathematical, atomic
and molecular physics with help of approximation
methods, a suitable basis function must be selected. A
good basis function for molecular calculations should
satisfy two basic requirements [7]: first, short expansions
of the atomic in the terms of the basis functions yield a
good accuracy and second, the molecular multi-center
integrals which occur inevitably and in very large
quantum numbers in that approach can be computed
efficiently. Among the ETFs, Slater type functions

(STFs), which were introduced by Slater in his article on
shielding constants [8], have the simplest analytical
structure of all exponentially decreasing functions. Other
commonly occurring functions of that class, for instance,
hydrogen eigenfunctions, can normally be expressed quite
easily as linear combinations of STFs. This implies that
multi-center integrals of other exponentially decreasing
functions can be expressed in terms of the basic
multi-center integrals over STFs [9,10,11].

Currently, the most promising approach for the
evaluation of molecular integrals appears to be the so
called Fourier transform method where multi-center
integrals are transformed into inverse Fourier integrals
[12,13,14]. In this approach, it is not the analytical
simplicity of basis function that matters but the analytical
simplicity of its Fourier transform. In case of using
analytical expressions of STFs is not giving a simplicity
in calculations, but Fourier transform of STFs are very
useful for evaluation of multi-center molecular integrals,
especially for overlap integrals. Overlap integrals are also
an important intermediate step for the derivation of all
other multi-center integrals. The evaluation of overlap and
other multi-center integrals over STFs is already today the
bottleneck of anyab initio calculation in terms of
accurate functions which have to satisfy the requirements
of cusp condition and exponential decay. This explains
the continued effort of theoretical investigation in this

∗ Corresponding author e-mail:nyukcu@gmail.com

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/090634
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field, from the early study of Roothaan and Ruedenberg
[15,16,17], Coulson [18], Löwdin [19], up to more recent
work by Silverstone [20], Steinborn [5], Jones [21],
Rinaldi’s groups [22].

If we compare the structures of the Fourier transforms
of STFs and BTFs it seems safe to conclude that overlap
integrals of BTFs will be more compact and better suited
for numerical applications than the corresponding
integrals of STFs. Thus, BTFs are very simple ETFs in
momentum space, in contrast to STFs which have
relatively complicated Fourier transforms and which are
only simple in coordinate space [7]. The Fourier
transforms of other exponentially decreasing functions
such as STFs or hydrogen eigenfunctions are significantly
more complicated. In papers by Niukkanen [23], Weniger
and Steinborn [7,24], and Weniger [25] it was shown that
Fourier transforms of all commonly occurring
exponentially decreasing functions can be expressed as
linear combination of Fourier transforms of BTFs.

This paper is structured as follows. Section2 provides
general properties of BTFs and other necessary
mathematical and physical relations. In Section3, FTM
has been explained and we describe the Fourier
transforms of BTFs and STFs with their normalization
coefficients. Besides, we obtain two new equations for
Fourier transforms of normalized BTFs in terms of
Gegenbauer polynomials and hypergeometric functions.
Finally, in section4, some numerical calculations in a
table and a graph have been discussed to have a better
understanding of aim of this work.

2 Definitions and Basic Relations

In this section, we first will define general properties for
calculation which are needed later. The unnormalized real
BTFs with the integer values ofn, l , and m quantum
numbers andα screening parameter [5]

Bm
n, l (α, r) =

[

2n+l (n+ l) !
]−1

k̂n−1/2(α r) Sm
l (αr) (1)

is given by reduced Bessel functions [26,27]

k̂ν (z) = (2/π)1/2 zν Kν (z) (2)

here,Kν (z) are modified Bessel functions of the second
kind [28]. For half-integral values ofν the reduced Bessel
functions are polynomials inzmultiplied by exp(−z) [27].
If the orderν assumes half-integral values,ν = n− 1/2,
n∈ N, the reduced Bessel functions can be represented by
an exponential multiplied by a polynomial [27]

k̂n−1/2(z) = e−z
n

∑
q=1

(2n−q−1)!
(q−1)! (2n−2q)!!

zq−1 (3)

In the half-integral orders,ν = n+1/2, n = 0, 1, ... , the
reduced Bessel functions can be represented as an

exponential multiplied by a polynomial, which can also
be written as a terminating confluent hypergeometric
function [27]

k̂n+1/2(z) = e−z
n

∑
q=1

(2n−q)!
q! (2n−2q)!!

zq

= (2n−1)!! e−z
1F1 (−n;−2n;2z) (4)

The angular part of the BTFs is given by regular solid
harmonics [29]

Sm
l (r) = r l Ym

l (θ ,φ) (5)

for the irregular solid harmonics

£m
l (r) = r−l−1Ym

l (θ ,φ) (6)

Spherical harmonicsYm
l (θ ,φ) can be real or complex

[29]:
Ym

l (θ , φ) = Pl |m| (cosθ ) Φm(φ) (7)

herePl |m| are normalized associated Legendre functions
and for real spherical harmonics

Φm(φ) =
1

√

π (1+ δm,0)

{

cos( |m| φ ) , for m ≥ 0
sin( |m| φ ) , for m < 0

(8)
for complex spherical harmonics

Φm(φ) =
1√
2π

eimφ (9)

For the integral of the product of three spherical
harmonics over the surface of the unit sphere, so-called
Gaunt coefficient [30];

〈l3m3|l2m2|l1m1〉

=

∫

[

Ym3
l3

(θ ,φ)
]∗

Ym2
l2

(θ ,φ)Ym1
l1

(θ ,φ)dΩ (10)

Gaunt coefficients are linearize the product of two
spherical harmonics by defined following form:

[

Ym1
l1

(θ ,φ)
]∗

Ym2
l2

(θ ,φ)

=
lmax

∑
l = lmin

(2)〈l2m2| l1m1 |l m2 − m1〉Ym2−m1
l (θ ,φ) (11)

The symbol∑ (2) indicates that the summation proceeds in
steps of 2. The summation limits in Eq. (11) determined by
the selection rules satisfied by the Gaunt coefficients [31].

Normalized BTFs are [32]

B̂m
n, l (α, r) = α3/2Nn, l Bm

n, l (α, r) (12)

Nn, l =

(

(2n+2l +1) !
(1/2)2n+l (1/2)l+1

)1/2

(13)
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The unnormalized STFs which are defined by [5]

xm
n, l (α, r) = (α r) n−1 exp(−α r )Ym

l (θ , ϕ) (14)

The normalized STFs are [33]

χ̂ m
n, l (α, r) = Nn (α) χ m

n, l (α, r) (15)

Nn (α) = α−n+1 [(2α ) 2n+1/(2n) !
]1/2

(16)

and also in Eq. (13), Pochhammer symbols [28]

(a)n =
Γ (a+n)

Γ (a)
=

{

∏n
j=1(a+ j−1) , for n> 0

1 , for n= 0
(17)

There are some relations between STFs and BTFs. In
other words, STF molecular integrals can be written as
finite linear combinations of molecular integrals for
BTFs, and vice versa. One of the these relations is [34]

χ̂ m
l+1, l (α, r) = B̂m

1, l (α, r) (18)

STFs and BTFs can be written in terms of each other
as [35]

χm
n,l (α, r)

=
n−l

∑
ρ=ρmin

(−1)n−l−ρ (n− l)!2l+ρ (l +ρ)!
(2ρ −n− l)! (2n−2l −2ρ)!!

Bm
ρ ,l (α, r) (19)

ρmin =

{

(n− l)/2, if n− l is even
(n− l +1)/2, if n− l is odd (20)

Bm
n,l (α, r )

= [(2n+2l)!! ]−1
n

∑
ρ=1

(2n−ρ−1)!2ρ−n

(ρ−1)! (n−ρ)!
χm

ρ+l ,l (α,r) (21)

3 Fourier Transform of Normalized BTFs

In this paper, we shall use the symmetric version of the
Fourier transform, i.e., a given functionf (r) and its
Fourier transformF (p) are connected by the relationships

F (p) = (2π )−3/2
∫

e− i p . r f (r) d3r (22)

f (r) = (2π )−3/2
∫

ei p . r F (p) d3p (23)

In connection with multi-center integrals in general
and with the spherical tensor gradient operator in special,
the Fourier transform suffers from a serious limitation
which must not be ignored. Classically, the Fourier
transforms are defined only for functions that are
absolutely integrable that belong to function space
L1
(

R3
)

, but by means of a suitable limiting procedure it
can be extended uniquely to give a unitary map from the

Hilbert spaceL2
(

R3
)

of square integrable functions onto
itself [36].

The practical usefulness of FTM is obvious, and it
would clearly beyond the scope of this study to mention
all successful scientific applications. Let we just mention
that Fourier transform is as first shown by Prosser and
Blanchard [37] and by Geller [38] one of the principal
methods of handling molecular multi-center integrals.
The main advantage of the representation of two-center
integrals as inverse Fourier integrals according to
two-center integrals is that a separation of integration
variables can be achieved quite easily iff (r) and its
Fourier transformF (p)are irreducible spherical tensors.
With the help of FTM, according to
∫∫

f ∗ (r1)g (r2) h (r1− r2) d3r1 d3r2

= (2π)3/2
∫

f̄ ∗ (p) ḡ (p) h̄ (p) d3p (24)

Hence, with the help of the FTM, some six-dimensional
integrals in configuration space with nonseparated
integration variables can be transformed into
three-dimensional integrals in momentum space where
the integration variables can be separated quite easily iff ,
g, andh are irreducible spherical tensors.

For the evaluation of the Fourier transform of BTFs,
we only have to express the well-known Rayleigh
expansion of a plane wave in terms of spherical Bessel
functions and spherical harmonics [39]

e±ix.y=4π
∞

∑
l=0

l

∑
m=−l

(±i)l j l (xy)
[

(Ym
l (θx,φx))

∗Ym
l (θy,φy)

]

(25)
where

j l (xy) =

(

π
2xy

)1/2

Jl +1/2(xy) (26)

is the spherical Bessel functions [40].
Fourier transform of unnormalized BTFs is [7]

Bm
n, l (α, p) = (2π )−3/2

∫

e− i p . r Bm
n, l (α, r) d3r (27)

= (2π )1/2 α2n+ l−1

(α2 + p2 )n+ l +1 Sm
l (−i p) (28)

By taking Eqs. (12), (13), (27) and (28) into consideration,
then Fourier transform of normalized BTFs can be denoted
as

B̂m
n, l (α, p) = (2π )−3/2

∫

e− i p . r B̂m
n, l (α, r) d3r (29)

= α3/2Nn, l (2π )−3/2
∫

e− i p . r Bm
n, l (α, r) d3r (30)

=(2π)1/2
(

(2n+2l +1)!
(1/2)2n+l (1/2)l+1

)1/2 α2n+l+1/2

(α2+ p2)n+l+1Sm
l (−ip)

(31)
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The Fourier transform of normalized STFs are given
by [41]

χ̂m
n,l (α,p)

=
2n+l+1αn+1/2l !(n− l)!

√

π (2n)! (α2+ p2)
(n+l+2)/2

Cl+1
n−l

(

α
√

α2+ p2

)

Sm
l (−ip)

(32)

where,Cα
n (x) is the Gegenbauer polynomials as defined

following form [40].

Cα
n (x) =

E(n/2)

∑
s=0

(−1)s (α +n− s−1) !
(α −1) ! s! (n−2s) !

(2x)n−2s

(33)
and

E(n/2) =
n
2
− 1− (−1)n

4
(34)

Now, let’s find the Fourier transform of normalized
BTFs in terms of Gegenbauer polynomials. First, with
help of Eqs. (1), (3), (12) and (13), normalized BTFs can
be written by linear combination of spherical harmonics
as

B̂m
n, l (α,r) = α3/2

(

(2n+2l +1)!
(1/2)2n+l (1/2)l+1

)1/2
[

2n+l(n+ l)!
]−1

·

e−α r
n

∑
q=1

(2n−q−1)!
(q−1)! (2n−2q)!!

(α r)q+l−1Ym
l (θ ,φ)

(35)

If we insert Eq. (35) into the Eq. (27), we can write

B̂m
n, l (α, p) = (2π )−3/2

∫

e− i p . r B̂m
n, l (α, r) d3r (36)

= (2π )−3/2
(

(2n+2l +1) !
(1/2)2n+l (1/2)l+1

)1/2
[

2n+l (n+ l) !
]−1

·

n

∑
q=1

(2n−q−1)!
(q−1)!(2n−2q)!!

α l+q+1/2
∫

e−ip.re−αrrq+l−1Ym
l (θ,φ)d3r

(37)
Substituting Eq. (25) and Eq. (26) into the integral in Eq.
(37) and using the orthogonality of the real spherical
harmonics, then, Eq. (37) can be rewritten as

B̂m
n, l(α,p)=

(

(2n+2l +1)!
(1/2)2n+l (1/2)l+1

)1/2
[

2n+l(n+l)!
]−1

p−1/2
·

n

∑
q=1

(2n−q−1)!
(q−1)! (2n−2q)!!

α l+q+1/2(−i)l Ym
l (p/p) · (38)

∫ ∞

0
e−α rJl+1/2(pr) rq+l+1/2dr

For the solution of integral form in the Eq. (38), we will
use the following relations separately [40]
∫ ∞

0
e−α r Jl+1/2(pr) rk+1/2dr

=
l ! (k− l)!

√
π (α2+ p2)

k+l+2
2

(2p)(2l+1)/2Cl+1
k−l

(

α
√

α2+ p2

)

(39)

∫ ∞

0
e−α r Jν (pr) rµ−1dr

=

( p
2α
)ν Γ (ν + µ)

αµ Γ (ν +1) 2F1

(

ν + µ
2

,
ν + µ +1

2
;ν +1;− p2

α2

)

(40)

These integral representations can be used to solve our
integral form in Eq. (38), and then with help of regular
solid harmonics in Eq. (5), and with Eq. (39), for
k = q+ l , finally, the Fourier transform of normalized
BTFs can be written in terms of Gegenbauer polynomials
by

B̂m
n,l (α,p) =

(

(2n+2l +1)!
(1/2)2n+l (1/2)l+1

)1/2
[

2n+l (n+ l)!
]−1

·
n

∑
q=1

(2n−q−1)!
(q−1)! (2n−2q)!!

α l+q+1/2 · (41)

2l+1/2l !q!
√

π (α2+ p2)(q+2l+2)/2
Cl+1

q

(

α
√

α2+ p2

)

Sm
l (−ip)

In the same way, by using integral form in Eq. (40), for
ν = l + 1/2 and µ = q + l + 3/2, then, the Fourier
transform of normalized BTFs can be obtained in terms of
hypergeometric functions as follow

B̂m
n, l (α,p) =

(

(2n+2l +1)!
(1/2)2n+l (1/2)l+1

)1/2
[

2n+l (n+ l)!
]−1

·

n

∑
q=1

(2n−q−1) !
(q−1)!(2n−2q)!!

α3l+2q+5/2

2l+1/2

Γ(2l+q+2)
Γ(l+3/2)

· (42)

2F1

(

2l +q+2
2

,
2l +q+3

2
;l +3/2;− p2

α2

)

Sm
l (−i p)

4 Summary and Conclusion

If Eqs. (41) and (42) are taken into consideration, in the
two equations, angular partsSm

l (−i p) regular solid
harmonics are the same. But, their radial parts are
different. Fourier transform of BTFs in Eq. (41) has been
obtained in terms of Gegenbauer polynomials, but in Eq.
(42), it has been obtained in terms of hypergeometric
functions. Although radial part of Eqs. (41) and (42) are
different functions, we can see from Table1 that their
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Table 1: Comparison of numerical results for radial part of
Fourier transform of normalized BTFs.

n l α p Radial part of Eq. (41) Radial part of Eq. (42)

1 1 1 1 9.21318×10−1 9.21318×10−1

2 1 1 1 7.52253×10−1 7.52253×10−1

2 2 1 1 8.60694×10−1 8.60694×10−1

3 2 1 2 2.64782×10−3 2.64782×10−3

6 5 1 2 5.9318×10−6 5.9318×10−6

8 8 1 2 4.45546×10−8 4.45546×10−8

12 10 1 3 6.31312×10−18 6.31312×10−18

15 12 1 3 8.2872×10−22 8.2872×10−22

calculated numerical results are completely same. This
situation proves that new obtained relations for Fourier
transform of normalized BTFs are correct.

Normally, behaviors of graph of Gegenbauer
polynomials and hypergeometric functions are not
similar. When we take into account Figure1, radial
functions in Eqs. (41) and (42) generates same graphs
even if they include Gegenbauer polynomials and
hypergeometric functions. It can be seen from Figure1
that graphs of radial part of Fourier transform of BTFs
exponentially decrease. In other words, Fourier transform
of BTFs are also one type of the other ETFs. Therefore, it
can be easily said that our new analytical and
computational findings are correct. The values of
quantum numbers in the Table1 and Figure1 are used in
the atomic units.

Fig. 1: Graph of radial part of Fourier transform of normalized
BTFs (FTBTFs) versusp for quantum numbersn= 3, l = 2, and
atomic screening parameterα = 1. This graph can be ploted by
using Eq. (41) or (42).

In this study we analyzed the analytical and numerical
properties of Fourier transform of BTFs. We give new and
useful mathematical relations for Fourier transform of
BTFs, and they will contribute to the development of the
other ETFs. Because, by using our method, new
mathematical expressions and Fourier transforms can be
derived for other molecular basis functions.

Consequently, we would like to say that obtained
equations in this paper for Fourier transform of
normalized BTFs can be used in the future molecular
integral calculations and mathematical applications.
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