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Abstract: A new life time distribution is proposed by the use of Sine function in terms of some life time distribution as baseline
distribution. It is derived for the baseline distribution as exponential distribution and some statistical properties of the new distribution,
thus obtained have been studied. The new distribution have been shown better fit to the bladder cancer patients data as compared to
some well known distributions available in the statisticalliterature through Akaike information criteria (AIC), Bayesian information
criteria (BIC), - log-likelihood and the associated Kolmogorov-Smirnov (KS) test values.
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1 Introduction

In statistical literature, several methods are available to propose new life time distribution by the use of some existing life
time distribution as baseline distribution. For example, Gupta et al. [4] proposed the cumulative distribution function (cdf)
G1(x) of new distribution corresponding to the cdfF1(x) of baseline distribution as,

G1(x) = (F1(x))α ,

where,α > 0 is the shape parameter of the proposed one. Forα = 1, the new distribution and the baseline distribution
are the same.

Several researchers generalise some useful distributionsby the idea of Gupta et al. [4]. For example, Nadarajah and Kotz
[6] introduced four exponentiated type distributions that are the generalizations of the standard gamma, standard
Weibull, standard Gumbel and the standard Frechet distributions and studied some mathematical properties for each
distribution. Nadarajah [7] derived exponentiated standard Gumbel distribution witha hope that it would attract wider
applicability in climate modeling as the standard Gumbel distribution do. Many other genralizations can be found in the
statistical literatures.

Another idea of generalizing a baseline distribution is to transmute it by using the quadratic rank transmutation map
(QRTM) (see, Shaw and Buckley [8]). If G2(x) be the cdf of transmuted distribution corresponding to the baseline
distribution having cdfF2(x), then

G2(x) = (1+λ )F2(x)−λ{F2(x)}2,

where|λ | ≤ 1. Forλ = 0, the new distribution is same as the baseline distribution.

Recently, various generalizations has been introduced based on QRTM. For example, transmuted extreme value
distribution (see, Aryal and Tsokos [9]), transmuted log-logistic distribution (see, Aryal [13]), transmuted modified
Weibull distribution (see, Khan and King [15]), transmuted inverse Weibull distribution (see, Khan, King and Hudson
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[19]) and many more.

In the present study, we propose a method to get new life distribution by the use of any baseline life distribution. Iff (x)
andF(x) be the pdf and cdf of some baseline life distribution, then the cdfG(x) of new life distrbution is proposed by,

G(x) = sin
(π

2
F(x)

)

(1)

Further, ifg(x) be the pdf andh(x) be the hazard rate function corresponding to the cdfG(x), then,

g(x) =
π
2

f (x) cos
(π

2
F(x)

)

(2)

and
h(x) =

π
2

f (x) tan
(π

4
+

π
4

F(x)
)

(3)

respectively.

We will call the transformation (1) and (2) as SS transformation for frequently used purpose in the present article or
elsewhere.

The rest of the paper is organized as follows: In section2, we propose a new distribtion, as obtain by SS transformation
(2) by considering Exp(θ )-distribution as the baseline distribution and studied some of its statistical characteristics; like
moment generating function (MGF), moments, median and mode. Further, in section3, we have shown the applicability
of the new distribution obtained in the section2, to the bladder cancer patients data in terms of assesing itsfitting in
comparison to some available distributions. In section4, we have derived MLE and Bayes estimators of the parameter
θ of the distribution, thus obtained under GELF and SELF. Finally, comparison and conclusion has been shown in the
sections5 and6 respectively .

2 SS transformation of Exp(θ )-distribution

Let the baseline distribution is Exp(θ )-distribution with pdf,

f (x) = θ e−θx ; x> 0 (4)

and the corresponding cdf is given by,
F(x) = 1−e−θx (5)

Here,θ > 0 is the rate parameter or inverse scale parameter of Exp(θ )-distribution.

Let g(x) be the pdf of the new distribution; obtained by SS transformation (2), corresponding to the baseline pdf (4), then

g(x) =
π
2

θ e−θx sin
(π

2
e−θx

)

; x> 0 (6)

For simplicity in terms of use, we name/call the distribution having pdf (6) as SS transformation of Exp (θ )-distribution
and we will write it as SSE(θ )-distribution.

The cdf and hazard rate function of SSE(θ )-distribution are given by,

G(x) = cos
(π

2
e−θx

)

(7)

and
h(x) =

π
2

θ e−θx cot
(π

4
e−θx

)

(8)

respectively.

The plots of pdf and hazard rate function, for different values ofθ are shown in Figures1 and2 respectively.
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2.1 Moment Generating Function of SSE(θ )-distribution

The moment generating function of SSE(θ )-distribution having pdf (6) is obtained as follows,

MX(t) = θ
∞

∑
k=0

(−1)k
(π

2

)2k+2

(2k+1)!

{

1
(2k+2)θ − t

}

(9)

providedt < 2θ .

2.2 Raw Moments of SSE(θ )-distribution

Therth moment about origin (i.e. raw moment) of SSE(θ )-distribution is obtained as follows,

µ
′

r =

[

∂ rMX(t)
∂ tr

]

t=0

=
r!
θ r

∞

∑
k=0

(−1)k
(π

2

)2k+2

(2k+1)! (2k+2)r+1 (10)

2.3 Median of SSE(θ )-distribution

The median of SSE(θ )-distribution is the solution of the following equation for M,

G(M) =
1
2

and the same is obtained as follows,

M =−
1
θ

ln

(

2
3

)

(11)

2.4 Mode of SSE(θ )-distribution

Differentiating (6) partially w. r. tox on both sides, we get

g
′
(x) =−

π
2

θ 2 e−θx
{

sin
(π

2
e−θx

)

+
π
2

e−θxcos
(π

2
e−θx

)}

(12)

Clearly

g
′
(x)< 0 ∀ x, θ

and this shows thatg(x) is a decreasing function ofx> 0 (∀ θ ) and hence its mode isx= 0.

3 Estimation of the parameter θ of SSE(θ )-distribution

3.1 Maximum Likelihood Estimator

Let n identical items are put on a life testing experiment and supposeX = (X1,X2, . . . ,Xn) be their independent lives such
that eachXi (∀ i = 1[1]n) follow SSE(θ )-distribution having pdf (6). Then the likelihood function forX is given by,

L(X|θ ) =
n

∏
i=1

g(xi) (13)
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Putting the value ofg at xi from (6) in (13), we get

L(X|θ ) =
n

∏
i=1

{π
2

θ e−θxi sin
(π

2
e−θxi

)}

=
(π

2

)n
θ n e

−θ
n
∑

i=1
xi

n

∏
i=1

sin
(π

2
e−θxi

)

(14)

The log- likelihood function forX is obtained as,

l = lnL(X|θ )

= K +nlnθ −θ
n

∑
i=1

xi +
n

∑
i=1

ln
{

sin
(π

2
e−θxi

)}

(15)

whereK = n ln
(π

2

)

is a constant.

Hence, the log- likelihood equation for estimatingθ is given by,

∂ l
∂θ

= 0

n
θ
−

n

∑
i=1

xi −
π
2

n

∑
i=1

{

xi e−θxi cot
(π

2
e−θxi

)}

= 0 (16)

Above equation is not solvable analytically forθ . We propose Newton- Raphson method for its numerical solution.

3.2 Bayes Estimators

An important element in Bayesian estimation problem is the specification of the loss function. The choice is basically
depends on the problem in hand. For more discussion on the choice of a suitable loss function, readers may refer to
Singh et al. [11]. Another, important element is the choice of the appropriate prior distribution that covers all the prior
knowledge regarding the parameter of interest. For the criteria of choosing an approprriate prior distribution, see Singh et
al. [12].

With the above philosophical point of view, we are motivatedto take the prior forθ asG(α,β )-distribution with the pdf

π(θ ) =
αβ

Γ (β )
e−αθ θ β−1 ; θ > 0 (17)

whereα > 0 andβ > 0 are the hyper- parameters. These can be obtained, if any twoindependent informations onθ are
available, say prior mean and prior variance are known (see,Singh et al. [12]). The mean and variance of the prior
distribution (17) are β

α and β
α2 respectively. Thus, we may takeM = β

α andV = β
α2 , giving α = M2

V andβ = M
V . For any

finite value ofM andV to be sufficiently large, (17) behaves as like as non-informative prior.

The posterior pdf ofθ givenX corresponding to the considered prior pdfπ(θ ) of θ is given by,

ψ(θ |X) =
L(X|θ ) π(θ )

∞
∫

0
L(X|θ ) π(θ )∂θ

=

e
−

(

α+
n
∑

i=1
xi

)

θ
θ β+n−1

n
∏
i=1

sin
(π

2 e−θxi
)

∞
∫

0
e
−

(

α+
n
∑

i=1
xi

)

θ
θ β+n−1

n
∏
i=1

sin
(π

2 e−θxi
)

∂θ

(18)

Now, to have an idea about the shapes of the prior and corresponding posterior pdfs for different confidence levels in the
guessed value ofθ as its true value, we randomly generate a sample from SSE(θ )-distribution for fixed valuesn = 15,
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θ = 2, M = 2,V = 0.1 (showing a higher confidence in the guessed value) andV = 500 (showing a weak confidence in
the guessed value). The sample thus generated is,

X = (0.009334163,0.035661012,0.041706382,0.054252838,0.058706749,0.085740112,0.094581234,0.119499688,
0.144828571,0.145472486,0.148218681,0.281091001,0.411933061,0.449613798,0.933292489)

The graphs are shown in Figures3 and4 respectively.

The loss functions we considered here are general entropy loss function (GELF) and squared error loss function (SELF),
which are defined by,

LG (θ̂ , θ ) =

(

θ̂
θ

)δ

− δ ln

(

θ̂
θ

)

−1 (19)

and

LS (θ̂ , θ ) = (θ̂ −θ )2 (20)

respectively.

The Bayes estimators ofθ under GELF (19) and SELF (20) are given by

θ̂G =
[

E
{

θ−δ |X
}]− 1

δ
(21)

and

θ̂S= E [θ |X] (22)

respectively. It is easy to see that whenδ = −1, the Bayes estimator (21) under GELF reduces to the Bayes estimator
(22) under SELF.

It is name-worthy to note here that GELF (19) was proposed by Calabria and Pulcini [3] and SELF (20) was proposed at
first by Legendre [1] and Gauss [2] when he was developing the least square theory. For more applications related to
GELF, readers may refer to Singh et al. [16,17,18].

Now, the Bayes estimator of the parameterθ of SSE(θ )-distribution having pdf (6) under GELF is obtained as follows,

θ̂G =
[

E
{

θ−δ |X
}]− 1

δ
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− 1
δ

(23)

Further, ifθ̂S denotes the Bayes estimator ofθ under SELF, then it can be obtained by puttingδ =−1 in (23) and therefore
the same is given by,

θ̂S=

∞
∫

0
e
−

(

α+
n
∑

i=1
xi

)

θ
θ β+n

n
∏
i=1

sin
(π

2 e−θxi
)
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∞
∫

0
e
−

(

α+
n
∑

i=1
xi

)

θ
θ β+n−1

n
∏
i=1

sin
(π

2 e−θxi
)

∂θ

(24)

The integral involved in Bayes estimators do not solved analytically, therefore we propose Gauss - Lagurre’s quadrature
method for their numerical evaluation.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


422 D. Kumar et al.: A New Distribution Using Sine Function...

4 Bladder Cancer Patients Data

In this section, we analyze a real data set to illustrate thatSSE(θ )-distribution can be a good lifetime model, comparing
with many known distributions available in statistical literature. For the purpose, we have considered a real data of the
remission times (in months) of a random sample of 128 bladdercancer patients. The data is extracted from Lee and
Wang [5] and is as shown below:

X = (0.08,2.09,3.48,4.87,6.94,8.66,13.11,23.63,0.20,2.23,3.52,4.98,6.97,9.02,13.29,0.40,2.26,3.57,5.06,
7.09,9.22,13.80,25.74,0.50,2.46,3.64,5.09,7.26,9.47,14.24,25.82,0.51,2.54,3.70,5.17,7.28,9.74,14.76,
26.31,0.81,2.62,3.82,5.32,7.32,10.06,14.77,32.15,2.64,3.88,5.32,7.39,10.34,14.83,34.26,0.90,2.69,4.18,
5.34,7.59,10.66,15.96,36.66,1.05,2.69,4.23,5.41,7.62,10.75,16.62,43.01,1.19,2.75,4.26,5.41,7.63,17.12,
46.12,1.26,2.83,4.33,5.49,7.66,11.25,17.14,79.05,1.35,2.87,5.62,7.87,11.64,17.36,1.40,3.02,4.34,5.71,
7.93,1.46,18.10,11.79,4.40,5.85,8.26,11.98,19.13,1.76,3.25,4.50,6.25,8.37,12.02,2.02,13.31,4.51,6.54,8.53,
12.03,20.28,2.02,3.36,12.07,6.76,21.73,2.07,3.36,6.93,8.65,12.63,22.69)

Khan et al. [19] showed the applicability of transmuted inverse Weibull distribution (TIWD) on this data by the fitting
criteria in terms of Akaike information criteria (AIC), Bayesian information criteria (BIC), mean square error (MSE) and
the associated Kolmogorov-Smirnov (KS) test values. They compared some life time distributions namely transmuted
inverse Rayleigh distribution (TIRD), transmuted inverted exponential distribution (TIED) and inverse Weibull
distribution (IWD) in terms of their AIC, BIC, MSE and KS testvalues and found that the TIWD has the lowest AIC,
BIC, MSE and KS test value, indicating that TIWD provides a better fit than the other three lifetime distributions to the
bladder cancer patients data.

We have computed MLE of the parameterθ of SSE(θ )-distribution having pdf (6) for the above data set and found it as
0.05925657. The AIC, BIC and KS test value for SSE(θ )-distribution are calculated and we get their values as in Table
1. We have extracted the values of AIC, BIC, -log–likelihood (-LL) and KS test values for TIWD, TIED, IWD and TIRD
for the above considered data from Khan et al. [19] and present their values in the following comparative Table 1.

Table 1: AIC, BIC, -LL and KS test values for SSE(θ )-distribution, TIWD, TIED, IWD and TIRD
Distributions AIC BIC -LL KS test value

SSE(θ )-distribution 832.6 835.5 415.3 0.067
TIWD 879.4 879.7 438.5 0.119
TIED 889.6 889.8 442.8 0.155
IWD 892.0 892.2 444.0 0.131
TIRD 1424.4 1424.6 710.2 0.676

The plots of empirical cdfFn and fitted cdfG(x) of SSE(θ )-distribution having pdf (6) for above data of the remission
times of a random sample of 128 bladder cancer patients are shown in Figure5.

From Table1, it is observed that SSE(θ )-distribution having pdf (6) has the lowest AIC, BIC, -LL and KS test value in
comparision to those of TIWD, TIED, IWD and TIRD; indicatingthat SSE(θ )-distribution provides a better fit than the
other four lifetime distributions namely TIWD, TIED, IWD and TIRD.

5 Comparison of the estimators

In this section, we compared the considered estimators i.e.θ̂M, θ̂S, θ̂G of the parameterθ of pdf (6) in terms of simulated
risks (average loss over sample space) under GELF. It is clear that the expressions for the risks cannot be obtained in nice
closed form. So, the risks of the estimators are estimated onthe basis of Monte Carlo simulation study of 5000 samples
from pdf (6). It may be noted that the risks of the estimators will be a function of number of items put on testn,
parameterθ of the model, the hyper parametersα andβ of the prior distribution and the GELF parameterδ . In order to
consider the variation of these values, we obtained the simulated risks for n = 15, θ = 2, M = 1,2,3,
V = 0.1,0.5,1,2,5,10,100,500 andδ =±3.
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Table2 shows the risks of the estimators ofθ when guessed value ofθ (M = 1) is less than its true value (θ = 2) and we
observed that when over estimation is more serious than under estimation, the estimator̂θG performs better (in the sense
of having smallest risk) in comparison tôθS andθ̂M for lower confidence in the guessed value and for high confidence in
guessed value,̂θS performs better than̂θG and θ̂M . But in the reverse situation, the only change is noted that for high
confidence in the guessed value,θ̂M performs better than̂θG andθ̂S.

Further, Table3 shows the risks of the estimators ofθ when guessed value ofθ (M = 2) is same as its true value (θ = 2)
and it is observed that the estimatorθ̂G performs better than the other estimators for moderate and lower confidence in
the guessed value, while for higher confidence in the guessedvalue,θ̂S performs better for whatever may be the situation
is serious.

Finally, Table4 shows the risks of the estimators ofθ when guessed value ofθ (M = 3) is greater than its true value
(θ = 2) and it is observed that when over estimation is more serious than under estimation, the estimatorθ̂G performs
better in comparison tôθS andθ̂M for lower confidence in the guessed value and for high confidence in guessed value,θ̂S

performs better. But in the reverse situation, the estimator θ̂M performs well for higher confidence,θ̂S ;performs batter for
moderate confidence and for lower confidence, the estimatorθ̂G performs better.

Table 2: Risks of the estimators ofθ under GELF for fixedn= 15,θ = 2, M = 1 andδ =±3

V
δ =−3 δ =+3

RG(θ̂M) RG(θ̂S) RG(θ̂G) RG(θ̂M) RG(θ̂S) RG(θ̂G)
0.1 0.2738009 0.8279515 0.5602645 0.378193 0.3246863 0.5540848
0.5 0.2743367 0.2698518 0.1989104 0.3770018 0.1684724 0.2507738
1 0.2718506 0.2561712 0.2097545 0.3928168 0.2311955 0.2512197
5 0.2718565 0.267155 0.2412518 0.3756553 0.3288731 0.278374
10 0.2696276 0.2665932 0.246442 0.3686863 0.3419576 0.278791
100 0.2738389 0.2751602 0.2541608 0.3761437 0.3673616 0.2906435
500 0.2805843 0.2833976 0.2628969 0.3793893 0.373038 0.2910866

Table 3: Risks of the estimators ofθ under GELF for fixedn= 15,θ = 2, M = 2 andδ =±3

V
δ =−3 δ =+3

RG(θ̂M) RG(θ̂S) RG(θ̂G) RG(θ̂M) RG(θ̂S) RG(θ̂G)
0.1 0.2779026 0.04231212 0.04093879 0.3857821 0.03682427 0.03842067
0.5 0.2724498 0.1058654 0.1103778 0.3884136 0.1308066 0.1080364
1 0.273504 0.1628869 0.1618809 0.3793466 0.1975366 0.1708151
5 0.2735559 0.2464482 0.231951 0.3710224 0.3160623 0.2569307
10 0.2779773 0.2647012 0.2482753 0.3689269 0.3368521 0.2714024
100 0.2711806 0.2700362 0.2521126 0.3748748 0.3653429 0.2896318
500 0.2764858 0.2788361 0.2566196 0.3686769 0.3618619 0.2879823
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Table 4: Risks of the estimators ofθ under GELF for fixedn= 15,θ = 2, M = 3 andδ =±3

V
δ =−3 δ =+3

RG(θ̂M) RG(θ̂S) RG(θ̂G) RG(θ̂M) RG(θ̂S) RG(θ̂G)
0.1 0.2715807 0.4357377 0.4365846 0.3884268 0.9126745 0.9036269
0.5 0.266041 0.2199453 0.2558782 0.3975871 0.43974 0.2773379
1 0.2777014 0.1767826 0.2118104 0.3691888 0.337568 0.1935476
5 0.2757049 0.2222811 0.22444 0.3687834 0.3365857 0.2431336
10 0.27652 0.2474642 0.2411496 0.3751386 0.353347 0.2676574
100 0.2737185 0.2712784 0.2533212 0.3783093 0.370335 0.2929393
500 0.276816 0.2764202 0.2568241 0.3842771 0.3776275 0.2966648

Fig. 1: Plots of probability density function of SSE(θ )-distribution for different values ofθ

Fig. 2: Plots of hazard rate function of SSE(θ )-distribution for different values ofθ
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Fig. 3: Prior and Posterior pdfs ofθ for a randomly generated sampleX from SSE(θ )-distribution for fixedn= 15,θ = 2, M = 2 and
V=0.1

Fig. 4: Prior and Posterior pdfs ofθ for a randomly generated sampleX from SSE(θ )-distribution for fixedn= 15,θ = 2, M = 2 and
V=500
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Fig. 5: Plots of empirical cdfFn and fitted cdfG(x) of SSE(θ )-distribution for remission times of 128 bladder cancer patients data

6 Conclusion

From the above simulation study, it is clear that the Bayes estimators of the parameterθ of SSE(θ )-distribution having
pdf (6) may be recommended for their use as per confidence level in the guessed value ofθ as discussed in the previous
section. Further from real data analysis, it is clear that SStransformation (1) is full proof and by its use, the distribution,
thus found may be appropriate for real life applications.
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