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Abstract: Quantum and classical correlations are studied for Werner-Like States of two-qubit cavity system interacting with a thermal
reservoir. Starting from Werner-like states, we have shownthat entanglement sudden death and decay of both the quantumdiscord and
classical correlation are accelerated by the different factors: thermal photons, cavity decay and the purity of the initial state. By these
factors, the death-start points of the correlations can be controlled and the two-qubit states have no correlations that can be determined.
There is no sudden death for quantum discord and classical correlation.
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1 Introduction

The development of the quantum information technology
stimulates a deep study of the properties of quantum
correlations inherent in a quantum system. Therefore, a
noted interest has been devoted to the definitions and
understanding of quantum and classical correlations in
quantum systems in the last two decades. It is well known
that the total correlation in a bipartite quantum system can
be measured by quantum mutual information [1], which
may be divided into classical and quantum parts [2]-[5].
The quantum part is called quantum discord (QD) which
was originally introduced in [4]. Recently, it has become
apparent that quantum discord is a more general concept
to measure quantum correlation than quantum
entanglement(QE) since there is a nonzero quantum
discord in some separable mixed states [4]. Recently, a
comparison between the dynamics of quantum discord
and entanglement has been made under the same
conditions, when entanglement dynamic undergoes a
sudden death [6,7,8]. The dynamics of quantum discord
and entanglement has been recently compared also under
the same conditions when entanglement dynamic
undergoes a sudden death [9]-[13]. Interestingly, it has
been proven both theoretically and experimentally that

such states provide computational speedup compared to
classical states in some quantum computation models [14,
15]. In these contexts, quantum discord could be a new
resource for quantum computation.

The calculation of quantum discord is based on a
numerical maximization procedure. Such a procedure
does not guarantee exact results and there are few
analytical expressions for some special cases [16,17]. To
avoid this difficulty, Ref.[18] introduced the geometric
measure of quantum discord (GMQD), which measures
the quantum correlations through the minimum
Hilbert-Schmidt distance between the given state and zero
discord state.

On the other hand, realistic quantum systems will
inevitably interact with the environments. The interaction
between the system and the environment usually leads to
a decoherence process [19,20]. This is one fundamental
obstacle to reliable quantum computation. Therefore,
understanding the dynamics of quantum and classical
correlations (CC) is an interesting line of research
[21]-[24]. In these references, It is showed that both
GMQD and QD die asymptotically with entanglement
sudden death, and the discontinuity in the decay rate of
GMQD does not always imply the discontinuity in the
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decay rate of QD. The entanglement sudden death [25,26]
has been experimentally observed in an implementation
using twin photons [27], and atomic ensembles [28].

In this paper the dynamics of quantum and classical
correlations of two-qubit cavity system, interacted with a
thermal reservoir, are study. Therefore, the quantum
correlation via quantum discord and its geometric
measure is compared with both quantum entanglement
and classical correlation.

2 Measures of quantum and classical
correlations

2.1 Quantum discord

To quantify the quantum correlations of a bipartite system,
no matter whether it is separable or entangled, one can use
the quantum discord [2,4]. Quantum discord measures all
nonclassical correlations and is defined as the difference
between total correlation and the classical correlation with
the following expression

D(ρAB) = I (ρAB)−J (ρAB), (1)

which quantifies the quantum correlations inρAB and can
be further distributed between entanglement and quantum
dissonance (quantum correlations excluding
entanglement)[29]. Here the total correlation between two
subsystemsA andB of a bipartite quantum systemρAB is
measured by quantum mutual information,

I (ρAB) = S (ρA)+S (ρB)−S (ρAB), (2)

whereS (ρAB) = Tr(ρAB logρAB) is the von Neumann
entropy, ρA = TrB(ρAB) and ρB = TrA(ρAB) are the
reduced density operators of the subsystemsA and B,
respectively. The measure of classical correlation is
introduced implicitly in Ref.[4] and interpreted explicitly
in the Ref.[2]. The classical correlation between the two
subsystemsA andB is given by

J (ρAB) = max
{Πk}

[S (ρA)−∑
k

pkS (ρk)], (3)

where{Πk} is a complete set of projectors to measure the
subsystemB, andρk = TrB[(IA ⊗Πk)ρAB(IA ⊗Πk)]/pk is
the state of the subsystemA after the measurement
resulting in outcome k with the probability
pk = TrAB[(IA ⊗ Πk)ρAB(IA ⊗ Πk)], and IA denotes the
identity operator for the subsystemA. Here, maximizing
the quantity represents the most gained information about
the systemA as a result of the perfect measurement{Πk}.
It can be shown that quantum discord is zero for states
with only classical correlations and nonzero for states
with quantum correlations. Note that discord is not a
symmetric quantity, i.e., its amount depends on the
measurement performed on the subsytemA or B [18].

2.2 Geometric measure of quantum discord

The geometric measure of quantum discord quantifies the
quantum correlation through the nearest Hilbert-Schmidt
distance between the given state and the zero discord state
[18,21], which is given by

Dg
A = min

χ∈S
‖ρAB − χ‖2, (4)

where S denotes the set of zero discord states and
‖A‖2 = Tr(A†A) is the square of Hilbert-Schmidt norm of
Hermitian operators. The subscriptA of Dg

A implies that
the measurement is taken on the systemA. A stateχ on
HA ⊗ HB is of zero discord if and only if it is a
classical-quantum state [30]. An easily computable exact
expression for the geometric measure of quantum discord
is obtained in Ref.[18] for a two qubit system.

2.3 Entanglement via negativity

Here, one uses the negativity[31] to measure the
entanglement, i.e., the negative eigenvalues of the partial
transposition of ρAB are used to measure the
entanglement of the qubits system. Therefore, the
negativity of a stateρAB is defined as

N(ρ) = max(0,−2∑
j

µ j), (5)

whereµ j are the negative eigenvalues of(ρAB(t))TB , and
TB denotes the partial transpose with respect to the second
system.

3 The model and quantum and classical
correlations

Here, one considers a qubit passes consecutively through
cavity A, a field damping region and cavityB. One of the
pioneering potential applications of this qubit in the
context of quantum information is ”artificial
atoms”(qubits),e.g., the system of the Cooper pair box
[32]. The qubit is initially prepared in|1〉 and the decay of
the radiation field inside a cavity may be described by a
model in which the field is coupled to a whole set of
reservoir modes. If the two cavities are initially in vacuum
state and the qubit always leaves the setup in|0〉, the
interaction Hamiltonian in the rotating-wave
approximation is given by [33]

H = ∑
j
(gA

j b̂†
j âA + gB

j ĉ†
j âB)e

−i(ω−ν j)t

+(g∗A
j b̂ jâ

†
A + g∗B

j ĉ jâ
†
B)e

i(ω−ν j)t , (6)

where ˆaA(B) and â†
A(B) are annihilation and creation

operators of the mode of the electromagnetic fieldA(B) of
frequencyω . b̂(ĉ) j and b̂†(ĉ†) j are the modes of cavity
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A(B). These modes have frequenciesν j and damp the

field. gA(B)
j are the coupling constants between the field

and the cavity. According to the general quantum
reservoir theory, with the Hamiltonian (Eq.6), the master
equation for the reduced density matrix for the filed in the
cavities is given by [34]

∂ρ(t)
∂ t

=
γ
2 ∑

j
(n̄ j +1)[2âiρ(t)â†

i − â†
i âiρ(t)−ρ(t)â†

i âi]

+
γ
2 ∑

j
n̄ j[2â†

i ρ(t)âi − âiâ
†
i ρ(t)−ρ(t)âiâ

†
i ], (7)

where the cavities are assumed to be identical, i.e., the
cavities have the same decay rates,γA = γA = γ, and also
the cavitiesA andB have the same thermal reservoir, i.e,
n̂A = n̂A = n̂. If the reservoir is at zero temperature
(n̄ = 0) and the remaining terms are due to vacuum
fluctuations, the solutions of Eq.7 depend on the initial
state of the cavities. In the following, one will focus on
the dynamics of entanglement, quantum discord and
classical correlations for different initial cavity states,
including pure and mixed states.

There are some interesting initial entangled states for
the two-bipartite which can be prepared and have
potential applications in the quantum information
processing tasks. One of them the extended Werner-like
state [35], which is defined by

ρAB(0) = p|ϕ〉〈ϕ |+
1
4
(1− p)Î, (8)

with p is the purity of the initial state of the cavitiesAB, Î
is a 4×4 identity matrix and|ϕ〉 = sinθ |01〉+ cosθ |10〉
is the NOON state, which can be generated by passing a
qubit is initially in the upper state through the two empty
high-Q cavities. In this case, the interaction times of a
qubit with two cavities are chosen to be such that one has
a π

2 -pulse in the first cavity and aπ-pulse in the second
cavity [36]. Its potential application in Heisenberg-limited
metrology and quantum lithography [37]. This class of
mixed state (8) arises naturally in a wide variety of
physical situations. The state in Eq.8 reduces to the
standard Werner mixed state whenθ = π

4 and to NOON
pure state whenp = 1. By dealing with the above
extended Werner-like state, the effect of mixedness of the
initial entangled state is studied. Both the NOON state
and Werner state, and the extended Werner-like state
belong to the so-called X-class state [38] whose density
matrix is given by

ρAB(t) = x|00〉〈00|+ y|01〉〈01|+ z|10〉〈10|+w|11〉〈11|

+d(|01〉〈10|+ |10〉〈01|), (9)

with the abbreviation

x =

[

2+2n̄− e−γ(2n̄+1)t

4n̄+2

]2

−
1
4

pe−2γ(2n̄+1)t ,

y+ z = −2

[

1− e−γ(2n̄+1)t

4n̄+2

]2

+
1
2

pe−2γ(2n̄+1)t

z− y = pcos2θe−γ(2n̄+1)t ,d = pcosθ sinθ e−γ(2n̄+1)t

w = 1− x− y− z.

The dynamics of GMQD of the density matrix (9) is given
by [18]

Dg
A =

1
2

[

4|d|2+(x− z)2+(y−w)2

−max{2|d|2,(x− z)2+(y−w)2}

]

(10)

But QD for the density matrix (9) is calculated by the
method in Refs.[17,39]. To calculate the negativity, one
finds the partial transposition ofρAB, with respect to the
second systemB, is given by

(ρAB)TB = x|00〉〈00|+ y|01〉〈01|+ z|10〉〈10|+w|11〉〈11|

+d(|00〉〈11|+ |11〉〈00|). (11)

One can get the eigenvalues of the density matrix(ρAB)TB

as: λ1 = y,λ2 = z and
λ3,4 = 1

2[(x +w)±
√

(x−w)2−4d2]. These eigenvalues
are numerically used to calculate the negativity. After
simple calculations, one can get the reduced density
matrices associated with the above states as

ρA(t) = (x+ y)|00〉〈00|+(z+w)|11〉〈11|, (12)

ρB(t) = (x+ z)|00〉〈00|+(y+w)|11〉〈11|. (13)

These reduced density matrices of the qubits are
represented in diagonal matrices, i.e., the states ofρA(t)
andρB(t) are classical states.

In Fig.1, the dynamics of GMQD, QD, QE and CC
are ploted as functions of the timet for different values of
γ and n̄ when θ = π

4 and p = 1. From Fig.1a, one can
easily find common features of GMQD, QD, QE and CC
for vacuum reservoir, ¯n = 0. One can observe that these
quantities asymptotically decay with the timet, where
QD and QE approximately have the same behavior, but
the values of QD are less than of QE in small interval in
the first. After that the values of QD always exceed the
values of the QE (see Fig.1a). So, QD are more general
than QE. On the other hand, GMQD, QE and CC
exponentially decay and their decay are faster than the
decay of QD. While for the case of the thermal reservoir
with nonzero mean photo number, GMQD, QD, QE and
CC are plotted in Fig.1b, with (n̄,γ) = (0.8,1.0). One
sees that all the decays of GMQD, QD, QE and CC will
be enhanced as the mean thermal photon number
becomes large. However, introducing the nonzero mean
photon number results in disappearance of the
entanglement completely after a finite time, termed
entanglement sudden death [25,26], and the death time
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Fig. 1: Time evolutions of QD (dash plots), GMQD (sold plots),
QE (dotted plots) and CC (dash-circle plots) for(n̄,γ) = (0,1)
in (a) and(n̄,γ) = (0.8,1.0) in (b), (n̄,γ) = (0.8,3) in (c) and
(n̄,γ) = (0.8,0.2) in (d)for θ = π

4 andp = 1.

decreases with the increase of ¯n. This means that QE
attains constant values while the quantum correlations of
GMQD and QD vary. That is to say, even in the region
where the entanglement is zero, the quantum discord can
reveal the quantum correlation between the two cavities.
In this sense, the quantum discord is more robust than
entanglement against decoherence induce by the mean
photon number of the thermal reservoir. However, the
thermal reservoir also leads to death both the quantum
discord and the classical correlation after some time
points, these points are called death-start points (DSPs).

From Figs.1a-d, one notes that these DSPs can be
controlled by the different factors: ¯n, p, and γ. If one
wants to approximately destroy the quantum or classical
correlations of the system, the large values of the mean
photon number should are used (see Fig.1b). Therefore,
the parameter ¯n eventually drives the quantum correlation
of the system to be zero. One can note that the negativity
experiences a sudden transition at particular times
changes from a finite to zero value, while GMQD, QD
and CC evolve continuously with respect to time even
they tend to be zero. This means that no sudden transition
occurs for GMQD, QD and CC and they have no
phenomenon of sudden death. In Figs.1a,b, the values of
DSPs of all the quantities depend on the ¯n. These DSPs
can be delayed and come early by changing the cavity
decay rate parameterγ at fixed values for ¯n and p. These
DSPs come early with large values for the cavity decay
rate, γ > 1, while they delay with the small values for
γ < 1.

In Figs.2a-d, one examines the effect of the thermal
photon parameter on the dynamics of the previous
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Fig. 2: The negativity in (a), quantum discord in (b), geometric
measure of QD in (c) and classical correlation in (d) with ¯n ∈
[0,2] for p = 1 andθ = π

4 .

measures of quantum and classical correlations with the
fixed values ofγ = p = 1 andθ = π

4 . It is clear thatDg
A,

D(ρ), N(ρ) andJ (ρ) decrease with the increase of ¯n,
and they have zero values when ¯n > 0. Precisely, one can
note that the thermal parameter leads to exponential
decay for the values of all the quantities and with larger
the value of ¯n is, the more rapid they reach its zero
asymptotic values. Therefore, a particular region for each
measure in which there is no state has quantum or
classical correlations can be determined by ¯n. All the
decays of the quantum and classical correlation will be
enhanced as the mean thermal photon number becomes
large. With the increase of ¯n, the DSPs of all the
quantities exponentially decay. The figures show that the
exponentially decay of the QE is faster than that for
GMQD, QD and CC. However, one can find that, from
Figs.2, the increase of ¯n accelerates the entanglement
sudden death and the decay of both the correlations, but
there is no sudden death ofDg

A, D(ρ) and J (ρ). This
means taht the entanglement is more fragile than quantum
discord against ¯n.

In Figs.3a-d, the effect of the purity of the initial
states on the dynamics of the measures is examined with
the fixed values ofγ = n̄ = 1 andθ = π

4 . It is clear that
the dynamics of the measures decrease with the decrease
of the purity p. When the purity p is zero, all the
measures vanish, this shows that the purity affects the
quantum discord and classical correlation in a similar
way. One sees that the influence of the purity leads to: the
amplitudes of the local maxima of theDg

A, D(ρ), N(ρ)
andJ (ρ) have exponential decay with the decrease of
the parameterp. When the correlations measures quite
vanish, the statesρAB completely lose its correlations.

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 6, 2997-3002 (2015) /www.naturalspublishing.com/Journals.asp 3001

0

0.5

1

1.5

2

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

 t
 p

a

Q
E

0

0.5

1

1.5

2

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

 t

 p

b

Q
D

0

0.5

1

1.5

2

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

 t

 p

c

G
M

Q
D

0

0.5

1

1.5

2

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

 t
 p

d

C
C

Fig. 3: The negativity in (a), quantum discord in (b), geometric
measure of QD in (c) and classical correlation in (d) withp ∈
[0,1] for vacuum reservoir andθ = π

4 .

This means that after a particular time, the purity destroys
the correlations of the cavities. Therefore, in the presence
of the purity one can determine a particular region in
which there is no state has any correlation.

4 Conclusions

The dynamics of quantum correlations (including
entanglement and quantum discord with its geometric
measure) and classical correlation are compared in a
two-qubit cavity system interacted with a thermal
reservoir. It is found that the different factors: thermal
photons, cavity decay rate and purity accelerate lead to
the entanglement sudden death and the decay of both the
quantum discord and classical correlation, but there is no
sudden death of quantum discord and classical
correlation. The death-start points of the quantum and
classical correlations can be controlled by these factors.
These factors also lead to destroy the quantum and
classical correlations, therefore, a particular region in
which there is no state have any correlations can be
determined.
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