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1 Introduction generalized Lipschitz mappings in cone metric spaces
over Banach algebras without assumption of normality.
Recently, it is not popular with the fixed point theorems in Our main results greatly generalize the previous work in
cone metric spaces any more. Investigating its reasonthe literature. Otherwise, we give some examples to
some scholars find that cone metric space is thesupport our assertions and to show the non-equivalence of
generalization of the usual metric space but it is a fakevectorial versions of fixed point theorems in generalized
generalization if one works with the assumption of cone metric spaces and scalar versions of fixed point
normal cone. Constructing some equivalent metrics bytheorems in (general) metric spaces (in usual sense).
using different approaches, they claim that the fixed point i i
results in cone metric spaces just are repeated as the usual N order to start this paper, we need to briefly recall
metric cases in metric spaces. Moreover, they make £0mMe basic terms and notions as follows.

conclusion that cone metric spaces are equivalent t0 | ot ./ pe a Banach algebra with a usjande the zero
metric spaces in terms of the existence of the fixed pointjement ofer. A nonempty closed convex sub&eof <7 is
of the mappings involved (se&,R, 3,4,5, 6]). called a cone if8,e} c P, P2=PPC P, PN (—P) = {6}

_ Butthe current situation changed, since, very recently.anq)p_ 1 ;p = Pforall A, i1 > 0. On this basis, we define
Liu and Xu [7] introduced the concept of cone metric a partial ordering< with respect td® by x < y if and only
space over Banach algebra, replacing Banach space Ry, y c p \we shall writex < y to indicate thak < y but
Banach algebra as the underlying space of cone metrit;# y, while x < y will indicate thaty — x ¢ intP, where
space. In this way, they proved some fixed point theoremsp'siands for the interior d®. If intP # 0, thenP s called
of generalized Lipschitz mappings with weaker and 5 ¢glid cone. Writd| - || as the norm on. A coneP is
natural conditions on generalized Lips.,c'hitz' co.n.staby called normal if there is a numb&t > 0 such that for all
means of spectral radiyggk). Note that it is significant to ﬁ’ye”(z{’ 0 < x=<yimplies|x|| < M|ly|. The least positive

introduce the concept of cone metric space over Banach,mner satisfying above is called the normal constat of
algebra since one can prove that cone metric spaces oV§fis well known thatM > 1.

Banach algebras are not equivalent to metric spaces in

terms of the existence of the fixed points of the In what follows, we always suppose thatis a Banach
generalized Lipschitz mappings (sed)[ In this paper, algebra with a unig, P is a solid cone, ane is a partial
we obtain some common fixed point theorems of ordering with respect t®.
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Definition 1.1 ([7]) Let X be a nonempty set. Suppose that p(X) satisfies
the mappingl : X x X — o7 satisfies:

(i) 8 <d(x,y) forall x,y € X with x# y andd(x,y) = 6 p(x) = lim ||x”||% =inf |\x”||r%.
if and only ifx =y; e
(ii) d(x,y) =d(y,x) forallx,y € X; If p(x) < |A|, thenAe— xis invertible in.e7, moreover,

(i) d(x,y) = d(x,2)+d(zy) forall x,y,z€ X.
Thend is called a cone metric oM, and(X,d) is called a L e X
cone metric space over Banach algebfa (Ae—x)~" = 20 AL’
1=

Definition 1.2 ([7]) Let (X, d) be a cone metric space over
Banach algebra7, x € X and{x,} a sequence iX. Then  whereA is a complex constant.
(i) {xn} converges tac whenever for everg > 6 there  |Lemma 1.8([19)) Let </ be a Banach algebra with a unit
is a natural numbeX such that(x,,x) < cfor alln > N. e a,b € o7. If acommutes wittb, then
We denote this b}f_l,iﬂxf‘ =XO0rXy — X (N — o).

(i) {xn} is a Cauchy sequence whenever for evesy p(a+b) < p(a)+p(b), p(ab) < p(@)p(b).
6 there is a natural numb& such thatd (xn, Xm) < c for
alln,m> N.

(i) (X,d) is a complete cone metric space if every E.
Cauchy sequence is convergent.

Example 1.3Let < = CJa,b| be the Banach space of alll
real continuous functions on a closed interfab], with

Lemma 1.9([16]) Let P be a solid cone in a Banach space

(1) If a,b,ce Eanda=< b« c, thena< c.
(2) If ae Panda <« cfor eachc > 0, thena= 6.

Lemma 1.10([8]) Let P be a solid cone in a Banach
) L [ - iP. If ke Pi
the supremum norm. Define multiplication in the usualagebrw and {un} be ac-sequence i crisan

way: (xy)(t) = x(0)y(t). This makess/ into a Banach arbltrarlly given vector, therﬁku?} is ac-sequence.
algebra; the constant function 1 is the unit element. LetProof Without loss of generality, puf < k. Letc>> 6.

P={xe .« :xt)>0te[ab} andX = R. Define a  Nere existd > 0 such that
mappingd : X x X — & by d(X,y) = [x—y|¢ for all B Ay

X,y € X, where¢ : [a,b] — R such that (t) = €. Then U(c,0)={xe o |x-c||<d}CP
(X,d) is a complete cone metric space over Banach
algebragr .

De]j(nition 1.4 ([10) Let f,g: X — X be mappings on a [l (c—kap) — || = ||kaol| < |[Kl|[|col| < &
setX.
(1) If y = fx = gxfor somex € X, thenx is called a

coincidence point off andg, andy is called a point of  \yhich means that — ke, € intP, that is,kc < c. Since
coincidence off andg; {un} is ac-sequence, then there existsuch thati, < co

(2) The pair(f,g) is called weakly compatible f and  for all n > N, so by (1) of Lemma 1.%u, < ¢ (n> N)
g commute at all of their coincidence points, thatfigx=

gfxforallxe C(f,g) = {xe X: fx=gx}.

Definition 1.5 ([11]) Let P be a solid cone in a Banach 2 Main results
spaceE. A sequencdu,} C P is said to be &-sequence
if for eachc > 6 there exists a natural numhrsuch that  In this section, we give some valuable lemmas in Banach
up < cforalln>N. algebras which will be used in the sequel. Moreover, we
obtain several common fixed point theorems in cone
metric spaces over Banach algebras instead of the
theorems only in cone metric spaces over usual Banach
) ) spaces. All conclusions are new. Further, we illustrate our
Proof Let ¢ > 6 be given. It follows that there i8 >0 results by some examples. These examples indicate that
such that our results in the setting of cone metric spaces over
Banach algebras are never equivalent to the versions of
U(c,0) ={xeE:[x—c|<d}CP usual metric spaces.

Chooseco > 6 with ||co|| < 12;. Note that

=c—kgpeU(c,d) CP

Lemma 1.6LetP be a solid cone in a Banach spacand
{un} C P be a sequence witku,|| — 0(n — o), then{un}
is ac-sequence.

On account of|up|| — 0(n — =), then there existll such
that||uy|| < & foralln> N. Hence|(c—up) —¢|| = ||un|| <

0, which implies that—un € U (c,8) C P, thatis,c—un €
intP, thusu, < cfor all n > N.

Lemma 1.7([19)) Let v be a Banach algebra with a unit

e X € </, then nime”H% exists and the spectral radius such thatnﬂm||k”|\% < a < 1. Lettingn be big enough,

Lemma 2.1Let.¥ be a Banach algebra with a ugiandP
be a solid cone in/. Leta,k,| € P holdl < kanda < la.
If p(k) <1, thena= 6.

Proof Sincep (k) = Ain |\k“||% < 1, then there exists > 0
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we obtain||k||7 < a, so that|[k"|| < a™ — 0 (n — ).
Thus||k"|| — 0 (n— ). Hence by Lemma 1.6k"} is ac-
sequence, and by Lemma 1.1@"a} is also ac-sequence.
As| <kleadstoa=<la=<I%2a=< .- <1"a=k"a, thus by
Lemma 1.9 thad = 6.

Lemma 2.2Let & be a Banach algebra with a ueitLet
ke . If p(k) <1, then

1
1-p(k)

Proof Sincep (k) < 1, it follows by Lemma 1.7 tha—Kis
= Ek' Sets= Ek' S = Ek'

p(le—k™) <

invertible and(e — k)%

thens, — s (n— o) andsn commutes W|ths for aII n It
follows immediately from Lemma 1.8 that

p(sh) = p(s—5+9) < p(si—9 +p(9)
= pP(s) —p(s) <p(sn—9),
p(s) =p(s—s+) <p(s—s)+p(s)
=p(s)—p(s) < p(s—s),
which imply that
Ip(sn) —p(s)| < p(sh—9) < [[sn—5|
= p(s) = p(S)(n— ).
Thus again by Lemma 1.8,
N ey
p((e—k) )—p(igok)
= p(s) = lim p(s,) = mp(éok')
N e 1

Theorem 2.3 Let (X,d) be a cone metric space over
Banach algebraZz andP be a solid cone in. Suppose
that f,g,S T are four self-maps onX such that
T(X) C f(X) andS(X) C g(X) and suppose that at least
one of these four subsets Xfis complete. Let

d(SxTy) < kid(fx,SX + kod(gy,SX) + kad(fx, Ty)
+kad(gy, Ty) +ksd(fx,gy), (2.1)

for all x,y € X, wherek; € P are generalized Lipschitz
constants with kik; = kik (i,j = 1,...,5). If
pki + ko) + pki + ks + ks) < 1 and

p(ks+ka) + p(kz + ks + ks) < 1, then the pair$f,S) and

(9,T) have a unique common point of coincidence.

Moreover, f,g,S and T have a unique common fixed
point provided that the pairsf,S) and(g, T) are weakly
compatible.

Proof Let xo be an arbitrary point inX and define a
sequencéyy} in X as follows:

Yon = S¥n = 0%n+1,  Yont1 = TXent1 = FXonio,

for all n> 0. Taking advantage of (2.1), we have

d(Y2n,Y2ni1) = d(S¥n, TXen11)
= kid(fxzn,S%n) + kod(g%n 1, S%n)
+kad(fx2n, Txont1) + Kad(9%en+1, TXont 1)
+ ksd(fXan, 9%en+1)
= kid(Y2n-1,Y2n) +Ka[d(Y2n—1,Y2n) +d(Y2n, Yons1)]
+ Kad(Yon, Yon+1) + Ksd(Yon—1, Yon)
= (ki +k3+ks)d(y2n—1,Y2n) + (k3 + ka)d(y2n, Y2nt1).

which implies that

(e—kz—Kka)d(Yon,Yon+1) = (k1 + ks +ks)d(Yon—1,Y2n)-

Since p(ks + kq) + p(ko + kg + ks) < 1 leads to
p(ks + ka) < 1, it concludes by Lemma 1.7 that
e— ks — k4 is invertible, so

d(Yan,Yani1) = (e—ks—ks)*
PutA = (e—ks—kq)~1

(k1 + k3 +Kks)d(Yzn-1,Y2n)-
(k1 + ks + ks), it is evident that
d(Yon,Yon+1) = Ad(Yon—1,¥2n)- (2.2)
Again by using (2.1),
d(Y2ni1,Y2nt2) = d(S¥ny2, TXens1)
= kid(fxoni 2, S¥%n2) +kod(9%ns 1, S¥n+2)
+kad(fxoni2, Txony 1) + Kad(9%ni 1, TXons1)
+ksd(fXony2,9%n+1)
= k1d(Yon+1,Yont2) + Ko[d(Yon, Yoni 1) + d(Yont1, Yons2)]
+ Kad(Y2n, Yont1) + ksd(Yonr1, Y2n)
= (ko + ka + ks)d(Yon, Yon+1) + (K1 + ko)d(Yont1, Yont2),

which means that
(k2 + ks +ks)d(Yzn, Yon+1)-

Becausep(ky + ko) + p(ky + ks + ks) < 1 indicates
p(ky+kp) <1, it follows by Lemma 1.7 tha¢ — k; — ky
is invertible, hence

d(Yant1,Y2n+2) = (e—ki—ka)~
(e— kl — kz)

(e—k1 —kz2)d(Yani1,Yoni2) =

(ko +Ka+ks)d(Yan, Yani1)-
Setu = “L(ko + kg + ks), it establishes that
d(Yan+1,Y2ni2) = Hd(Yzn,Yoni1)- (2.3)
Combining (2.2) and (2.3), we obtain
d(Yant1,Y2ns2) < HAA(Y2n-1,Y2n),
d(Yzn,Yan+1) = ApHd(Yan—2,Yon-1)-

Askikj =kjki (i,j=1,
h= A u, we claim that

,5), 0ne hagtA = A 1. Denoting

- < hed(y1,y2)
(2.4)

d(Yorr1, Yokt 2) < hd(yak—1,Y2) <
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and

d(Yak, Yaks1) < hd(yak2,Y2k-1) < -+ < h*d(yo,y1)

(2.5)
for anyk. So by (2.4) and (2.5) it concludes that
d(ynynes) <h'Zd(Ye) (N=2k+1)  (2.6)
and
d(ynyni1) <h2d(yo.y1) (n=2k).  (2.7)

Note by Lemma 1.8 and Lemma 2.2 that

p(h)=p(Ap)

=p[(e—ks—ka) " (ky + ks +ks)
(e—ki—kz) *(ka+ ks +ks)]

<p((e—ks—ki) 1) p(ks+ ks +ks)
p((e—ki—ko) ) p(ka+ ka+ks)
p(k1+k3+k5) p (ko + kg + ks)

~ 1-p(kstke) 1-p(ki+kz)

_ p(kit+ks+ks) p(ka+ks+ks)
1-p(kitkz) 1—p(ks+ke)

<1,

which means thate — h)~*

oo, For eachm > n, without Ioss of generality, let be odd
andmbe even. Thus by (2.6) and (2.7) it follows that

= Z h' and|h"|| — 0 asn —

d(Yn,Ym) = d(YnaYn-s-l) +d(Yni1,Ynt2) + -+ d(Ym-1,Ym)
(N2 +h" 4 0" )d(y1,y)
+ ("2 +h"2 4 0" )d(yo,v1)
~)d(y1,¥2)
-)d(Yo, Y1)

"2 d(y1,y2) + ™% d(yo,y1)].

PN

<h"Z (e+h+h2+
+h'F (e+h+h2
=(e-h™

In view of

Ih" 2 d(y2.y2) + h"2 d(yo.y1) |
n—1 n+1
< |02 [|[[d(ys,y2)l| + [[N"Z [[d (Yo, ya) | — O(n — e),

by Lemma 1.6, we haveghﬂi‘ld(yl,yz) + hn—f‘ld(yo,yl)}

is ac-sequence. Next by using Lemma 1.9 and Lemma dy.y) =

1.10, we conclude thafy,} is a Cauchy sequence X.

Suppose, for example, th&{X) is a complete subset of

X. Then there exists some point X such thay, —y=

fu (n— o) for someu € X. Of course, the subsequences
{y2n} and{y2n.1} also converge tg. Let us prove that

y = Su Indeed, by using (2.1), itis clear that

d(Suy) < d(SuTxn1) +d(Txent1,Y)
< kyd(fu,Su) + kod(gxon+1,SU)
+kad(fu, Txeny 1) + Kad(9%n+ 1, T Xon11)
+ksd(fu,g%n+1) +d(Txeni1,Y)
= kid(Y,SU +kad(9%n+11,Y) + kod(Suy)
+kad(y, TXont1) + Kad(@%n+1,Y)
+ kad (ya TX2n+1) + ksd (y, gx2n+1)

+d(Txni1,Y). (2.8)

Becausee— k; — k; is invertible, then by (2.8), it follows
that

(e—ki— ko) (ko + ks + ks)d(g%en+1,Y)
+ (k3 + ke +€)d(Txny1,Y)]-

d(Suy) <

Since{d(gX%n+1,Y)} and{d(T»en11,Y)} arec-sequences,
then by utilizing Lemma 1.9 and Lemma 1.10, it
establishes thay = Su Soy = Su= fu. By virtue of

y = Sue §X) C g(X), there exists € X such thay = gv.
Let us prove thay = Tv. Actually, by (2.1), we gain that

d(y, Tv) = d(y,S¥n) 4+ d(Sxn, TV)
= d(y, S¥n) + kad(fx2n, Sxn)
+kad(gV, Sxn) + kad(fXxon, TV)
+kad(gV, TV) + ksd( X2n,gV)
= d(y, S¥n) + kad(fxzn,y) + kid(y, Sxn)
+ kad(Y, S%n) + kad(fXzn,Y) + ksd(y, TV)
+k4d(y,Tv)+k5d(fx2n,y). (2.9)

Note thate — k3 — ky4 is invertible, then by (2.9), it follows
that

(e—ks—kq) "2[(€+ ki + ka)d(Y, S¥n)
+ (k1 + ka4 ks)d(fxon,y)].

d(y,Tv) <

Now that {d(y,Sx»n)} and{d(fxn,y)} arec-sequences,
then by using Lemma 1.9 and Lemma 1.10, it concludes
thaty = Tv. Hencey = gv= Tv. We have proved thatis

a common point of coincidence for pait§,S) and(g, T).
Next we shall show that the common point of coincidence
is unique. In fact, if there exists another common point of
coincidencey such that/ = SU =TV = fu =gV (say),
then by (2.1), we have

(SU,Tv)
=< kld(fu ,SU) + kod(gv, SU) + ksd(fU', TV)
+kad(gv; TV) + ksd(fU', gv)
= (k2 + ks +ks)d(Y,y).
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By utilizing Lemma 1.8, it is not hard to verify that

P (2kg + 2ko + 2kz + 2K + 2ks)
= p[(ki+k2) + (K1 + k3 + ks)
+ (ks t+ke) + (ko + ka+ ks)]
< p(ki+ka) + p(ky+Ks+Ks)
+ p(ks+ka) + p (ko + ks +ks)
<2,

which establishes thad(ky + ko + ks + kg + ks) < 1. As
a result ofky + k3 + ks < kg + ko + k3 + kg4 + ks, then by
Lemma 2.1 it yields thay =Y.

Now assuming that the pairf,S) and (g, T) are
weakly compatible, we shall proweis the common fixed
point of f,g,SandT. Since(f,S) and(g,T) are weakly
compatible, it establishes th&8f u= fSuandTgv=gTV.
In other words, we demonstrate tt&t= fy andTy = gy.

On account of (2.1), we deduce that

d(Syy) =d(SyTy)
=< kid(fy,Sy) + kod(gy, Sy + ksd(fy, Tv)
+Kad(gV, TV) +ksd(fy,gv)
= (ko + k3 +ks)d(Syy)

and

d(Ty,y) =d(y,Ty) =d(SuTy)
=< kad(fu,Su) + kod(gy, Su) + ksd(fu, Ty)
+kad(gy, Ty) +ksd(fu,gy)
= (ko +ks+ks)d(Ty,y).

Note the facts thap (ks + ko + ks + kg + ks) < 1 andk, +
k3 + ks < ki + ko + kz + kg + ks, then by Lemma 2.1, we
speculatssy=y, Ty=Yy. Thereforefy=gy=Sy=Ty=
y. Thatis,y is a common fixed point of ,g, SandT.

Finally, we shall show the common fixed point is
unique. If there is another common fixed poimthen by
(2.1), we arrive at

d(y,2)

d(SyT2

< kd(fy,Sy) +kod(gz Sy) + ksd(fy, T2
+kad(92 T2) + ksd(fy,g2)

= (k2 + k3 +ks)d(y,2).

Again by Lemma 2.1, we acquing= z. The proofs for
cases in whiclg(X), S(X) andT(X) are completely are

for all x,y € X, wherek; € P are generalized Lipschitz
constants with kk; = kik (i,j = 1,...,5). |If
pki + k) + pki + ks + ks) < 1 and
p(ks+ka) + p(ko + ks +ks) < 1, then the pair$f,S) and
(f,T) have a uniqgue common point of coincidence.
Moreover,f,SandT have a unique common fixed point
provided that the pairgf,S) and (f,T) are weakly
compatible.

Proof By taking f = gin Theorem 2.3, we get the proof.

Corollary 2.5 Let (X,d) be a cone metric space over
Banach algebraz andP be a solid cone inz. Suppose
that f,S are two self-maps oX such thatS(X) C f(X)
and suppose that at least one of these two subse{sof
complete. Let

d(SxSy) < kid(fx, SX) + kod(fy, SX + kad(fx, Sy)
+ kad(fy, Sy) + ksd(fx, fy),

for all x,y € X, wherek; € P are generalized Lipschitz
constants with kk; = kik (i,j = 1,...,5). |If
pki + k) + pki + ks + ks) < 1 and
p(ks+ka) + p(k2+ka+ks) < 1, then the paiff,S) has a
unique point of coincidence. Moreovefr,and S have a
unique common fixed point provided that the pdirS) is
weakly compatible.

Proof By taking f =g andS=T in Theorem 2.3, we
obtain the proof.

Corollary 2.6 Let (X,d) be a cone metric space aRde

a solid cone. Suppose thétg, S T are four self-maps on
X such thafT (X) C f(X) andS(X) C g(X) and suppose
that at least one of these four subsetXa$ complete. Let

d(SxTy) < kid(fx,SX) + kod(gy; SX + kad(fx, Ty)
+kqd(gy, Ty) + ksd( X, gy),

for all x,y € X, wherek; > 0 (i =1,...,5) are constants
with 2k; + ko + ks + ks < 1 andky + ks + 2ks + ks < 1.
Then the pairgf,S) and(g,T) have a uniqgue common
point of coincidence. Moreoverf,g,S and T have a
unique common fixed point provided that the pdifsS)
and(g, T) are weakly compatible.

Proof Sincep (k) = k for allk € R*, then by Theorem 2.3,
the proofis clear.

Remark 2.7 Theorem 2.3 greatly generalizes the main
results of [7,8] and [17]. Corollary 2.6 is the version of
usual cone metric spaces and greatly expands the main
results of L3]. Indeed, letf = g = ix (identity mapping)

similar and are therefore omitted. We complete the proof.and S= T may arrive. Otherwise, Corollary 2.6 also

Corollary 2.4 Let (X,d) be a cone metric space over
Banach algebraz andP be a solid cone inZ. Suppose
that f,ST are three self-maps onX such that

generalizes [12, Theorem 2.1] and [15, Theorem 2.1].

Remark 2.8 Our main results do not need the assumption
of normality. Actually, there exist lots of non-normal

S(X)UT(X) € f(X) and suppose that at least one of cones (seellf]). Based on these facts, our main results

these three subsets Xfis complete. Let

d(SxTy) < kid(fx,SX + kod(fy, SX + kad(fx, Ty)
+Kad(fy, Ty) +ksd(fx, fy),

are very meaningful and may offer us an useful tool for
the existence of fixed points.

Remark 2.9 Throughout the conclusions above, we
consider common fixed point theorems in cone metric
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spaces over Banach algebras instead of the theorems onlye deduce thafX,d) is a cone metric space over and
in cone metric spaces. All the coefficients are vectors and is a solid cone. Suppose the mappiggs: X — X as
the multiplications such askid(fx,Sx are vector

multiplications instead of usual scalar ones, which may BLHX, X#£0, ax, X#0,
bring us more convenience in applications. Sx= v, Xx=0. fx= v, x=0.
Remark 2.101t is a valuable increase in introducing the

concept of cone metric space over Banach algebra, since&/herea > 0,3 > 1 andy # 0. It is easy to see that

it establishes the non-equivalence of fixed point results

between metric spaces and cone metric spaces over d(SXSY) =kid(fx,SX +kxd(fy,SX +ksd(fx,Sy)

Banach algebras. The following examples illustrate our + kqd(fy, Sy + ksd(fx, fy)

conclusion.

Example 2.11Let o = R2 and the norm bé(x, %) =  forallxyeX, where

[X1| + [Xo|. Define the multiplication by 11 11 11

ki=(23) k=(31) k=(21)
Xy = (x1,%2)(Y1,Y2) = (X1y1 +Xay2 -+ Xay1,%2Y2), ' (0 ; ) ’ (0 g) (0 %)
1
wherex = (X1,%2),Y = (Y1,¥2) € «/. Then is a Banach Ky = (711 l) ks = (E a)
algebra with a unite = (0,1). Taking X = [0,1], 03/ 03/

P={(x1,%2) € & : x1,X2 > 0} and
d(x,y) = (x—y|,|x—y|) forall x,y € X, Note thatf andScannot commute at the coincidence point
we claim that(X,d) is a cone metric space over and  x= 0 of them, that is to say, the pdif, S) is not weakly
P is a normal solid cone Takg = (25, 25) kp = (é, é) compatible, thus although most of conditions in Corollary
ks = (1,1), ke = ( L 1y andks = (1,1), itis clear that 2.5 are satisfiedf, andShave not any common fixed point
- 6’6

8’ 8 32732 in X. Thus, this example demonstrates the crucial role of
kikj =kjki (i, = »5)- Denote = (ty,ty) (t. > 0), then weak compatibility in our results.

p(t) = lim I[t|7 = lim (2"~ 1)@,@)”% — 2. Example 2.13Let « = R* and the norm béf(xi,xp)|| =
o o [X1] + |X2|. The multiplication is defined by

Hence Xy = (X1,X2) (Y1,Y2) = (Xay1,X1Y2 + X2y1),
pllatle)+pllatkstks) wherex= (X1,%2),y = (Y1,Y2) € & Itis not hard to verify
= 2( ) ( L 4= L + 1) 149 <1 that.e/ is a Banach algebra with a urt= (1,0). LetX =
25 8 25 8 6 150 [0,1] X (—00,+), P={(x1,X2) € & : X1,X2 > 0} and
P (ka+Ka) + p (k2 + ks +ks)
1 1 1,1 1y 23 d(x,y) = (|x1 —y1l, %2 — y2|)
=2(g+ ) +2(5+55+5) =5 <1 ,
8" 32 832 6 24 for all x = (x1,%2),Y = (y1,Y2) € X. Then(X,d) is a cone
Defining two mapping$: X — X andf : X — X by Sx= metric space oves/ andP is a normal solid cone.
X%+ 2x and fx = x, we obtain tha§(X) C f(X), f(X) Now define a mappin§: X — X by
is complete and the pairf,S) is weakly compatible. It is Sy
easy to see that x=S(x1, %)
1, . x 1
d(Sx Sy =< kud(fx,SX + kad( fy, SX + kad( Fx, Sy) = (i (Slni =[xy — §|),arctani1+ [X2]) +In(x1 + 2))

+kad(fy, Sy +ksd( X, fy)

for all x,y € X. Therefore, all conditions of Theorem 2.3

or Corollary 2.5 are satisfied. Thus by Theorem 2.3 or ~ 4(SXSY = d(s(xl’XZ) S(yl,yz))
Corollary 2.5,f andS have a uniqgue common fixed point _ (1 X .o 4 1
in X. This common fixed point ig = 0. B (‘ Z(Sm 2 sm a |+ 2 m

Example 2.12 Let o = {(gg)‘aﬁ c R}, Iarcta"ilJrIXzI) afctani1+|yzl)
+In(xq +2) = In(y, +2)|)

By using mean value theorem of differentials, we have that

apy|_ T .
H ( 0q ) H = |a| + |B]|. The multiplication is usual matrix Iy — y1| 1 1 1
multiplication. Thene is a Banach algebra with a usual = ( a7 oyl she—yel+ §|x1—y1|)

. o o a B . 3
unit. ChooseX =R, P = {(0 a)‘a,ﬁ > 0}. Letting (4’1) (1% — yal, [%2 — y2l)

3
_ (Ix=yl 2)x—y]| =(=,1)d(xy)
d(X,y) - ( o |X_y| )7 Xayexa (4 )
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