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Abstract: Plane waves propagating in generalized thermoelastic halfspace rotating with specific angular frequency has been
investigated. The appropriate model of the problem in context of Green and Naghdi theory is generated, while modulus of elasticity is
taken as a linear function of reference temperature. An exact approach of normal mode analysis method is implemented to obtain the
expression for the displacement components, stresses and temperature distribution functions. The variations of the considered variables
against the vertical distance are illustrated graphicallyand a comparison is made for results predicted by both the theories in presence
and absence of rotation effect we have also encountered the effect because of temperature involved in elastic parameters.
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1 Introduction

The linear theory of elasticity is of paramount
importance in the stress analysis of steel, which is the
commonest engineering structural material. To a lesser
extent, linear elasticity describes the mechanical behavior
of the other common solid materials, e.g. concrete, wood
and coal. However, the theory does not apply to the
behavior of many of the new synthetic materials of the
clastomer and polymer type. The linear theory of
micropolar elasticity is adequate to represent the behavior
of such materials. For ultrasonic waves the influence of
the body microstructure becomes significant, this
influence of microstructure results in the development of
new types of waves is not in the classical theory of
elasticity. Metals, polymers, composites, solids, rocks,
and concrete are typical media with microstructures.
More generally, most of the natural and man-made
materials including engineering, geological and
biological media possess a microstructure.

Eringen and Suhubi[1] and Eringen[2]- [4]developed
the linear theory of micropolar elasticity and microstretch
elastic solids. This theory of microstretch thermoelasticity
is the generalization of the theory of micropolar elasticity
and a special case of the micromorphic theory. The

material points of microstretch elastic solids can stretch
and contract independently of their translations and
rotations. The basic results in the theory of micro stretch
elastic solids were obtained in the literature[5]-[8].

The theory of thermo-micro-stretch elastic solids was
introduced by Eringen[9] . In the framework of this
theory Eringen established a uniqueness theorem for the
mixed initial-boundary value problem. The theory was
illustrated through the solution of one-dimensional waves
and compared with lattice dynamical results. The
asymptotic behavior of solutions and an existence result
were presented by Bofill and Quintanilla[10] . A
reciprocal theorem and a representation of Galerkin type
were presented by De Cicco and Nappa[11] . De Cicco
and Nappa[12] extended a linear theory of
thermo-microstretch elastic solids that permits the
transmission of heat as thermal waves at finite speed. The
theory is based on the entropy production inequality
proposed by Green and Laws[13] . The basic results and
an extensive review of the theory of thermo-microstretch
elastic solids can be found in the book of Eringen[5].

Most of the investigations were done under the
assumption of temperature-independent material
properties, which limit the applicability of the solutions
obtained to certain ranges of temperature. Modern
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structural elements are often subjected to temperature
change of such magnitude that their material properties
may be longer be regarded as having constant values even
in an approximate sense. At high temperature the material
characteristics such as modulus of elasticity, thermal
conductivity and the coefficient of linear thermal
expansion are no longer constants[14] . The thermal and
mechanical properties of the materials vary with
temperature, so the temperature-dependent on the
material properties must be taken into consideration in the
thermal stress analysis of these elements. Othman and
Kumar[15] investigated the dependence of modulus of
elasticity on reference temperature in generalized
magneto-thermo-elasticity and obtained interesting
results. Youssef[16] used the equation of generalized
thermoelasticity with one relaxation time with variable
modulus of elasticity and the thermal conductivity to
solve a problem of an infinite material with spherical
cavity.

Green and Naghdi[17]-[19] proposed another three
models, which are subsequently referred to as GN-I, II
and III models. The linearized version of model-I
corresponds to the classical thermoelastic model-II the
internal rate of production of entropy is taken to be
identically zero implying no dissipation of thermal
energy. This model admits un-damped thermoelastic
waves in a thermoelastic material and is best known as the
theory of thermoelasticity without energy dissipation.
Model-III includes the previous two models as special
cases, and admits dissipation of energy in general.
Othman [20] constructed a model of the two-dimensional
equations of generalized thermoelasticity with two
relaxation times in an isotropic elastic medium with the
modulus of elasticity being dependent on the reference
temperature. Lotfy and Othman [21] studied the effect of
rotation on generalized thermo-microstretch elastic
medium under different theories. Recently some authors
discussed different types of problems in generalized
thermo-microstretch elastic medium (Marin[22]-[23]
Baljeet[24] , Kumar[25]-[26] Othman et al. [27]-[28] ,
Ellahi et al. [29]-[33]).

This paper presents an attempt to examine the
temperature dependency of elastic modulus and rotation
on the behavior of two-dimensional solution in a
generalized thermo-microstretch elastic medium. We have
also encountered the fascinating theories of generalized
thermoelasticity presented by Green and Naghdi. We have
adopted normal mode analysis method and find the
expressions for field variables.

2 Formulation of the Problem

We obtain the constitutive and the field equations for a
linear isotropic generalized thermo-microstretch elastic
solid in the absence of body forces. We use a rectangular
coordinate system(x,y,z) having originated on the surface
y = 0 and z-axis pointing vertically into the medium. The

thermoelastic plate is rotating uniformly with an angular
frequencyΩ = Ω n , wheren is a unit vector representing
the direction of the axis of rotation. The basic governing
equations of linear generalized thermoelasticity with
rotation in the absence of body forces and heat sources
are

σ ji, j = ρ [ü+ Ω × (Ω × u)+2Ω × u̇]i, (1)

εi jrσ jr +m ji, j = jρ
∂ 2φi

∂ t2 , (2)

α0∇2φ∗−
1
3

λ1φ∗−
1
3

λ0(∇.u)+
1
3

γ̂1T =
3
2

ρ j
∂ 2φ∗

∂ t2 ,

(3)

K∗∇2T +K∇2Ṫ = ρ CE T̈ + γ̂ T0 üi,i + γ̂1T0
∂ φ∗

∂ t
, (4)

σil = (λ0φ∗+λ ur,r)δil +(µ + k )ul,i+ µ ui,l − k εilrφr − γ̂ T δil ,
(5)

mil = α φr,rδil + β φi,l + γ φ1,i, (6)

λi = α0 φ∗
,i , (7)

e =
∂ u
∂ x

+
∂ w
∂ z

(8)

WhereT is the temperature above the reference
temperatureT0 chosen so that

∣

∣(T −T0)
/

T0
∣

∣ << 1,λ , µ
are the counterparts of Lame parameters, the components
of displacement vectoru areui,t is the time, σi j are the
components of stress tensor,e is the dilatation,ei j are the
components of strain tensor,j the micro inertia
moment,φ∗is the scalar microstretch,φ is the rotation
vectormi j is the couple stress tensor,δi j is the Kronecker
delta,εi jr is the alternate tensor, the mass density isρ ,the
specific heat at constant strain isCE ,, the thermal
conductivity is K∗and Kmaterial characteristic of the
theory. The state of plane strain parallel to thexy-plane is
defined by

u1 = u (x,z, t),u2 = 0,u3 = w(x,z, t),ϕ1 = ϕ3 = 0, (9)

φ2 = φ2(x,z, t),φ∗ = φ∗(x,z, t), Ω = (0,Ω ,0).

We assume that

λ = λ2 f (T ),µ = µ0 f (T ),γ = γ0 f (T ),λ0 = λ ∗
0 f (T ),

k = k0 f (T ),β = β0 f (T ),α = α1 f (T ), γ̂ = γ̂0 f (T ),

α0 = α∗
0 f (T ),λ1 = λ3 f (T ), γ̂1 = γ̂∗1 f (T ).

Where f (T ) is a non-dimensional function depending on
temperature, during the case of temperature independent

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 6, 2963-2972 (2015) /www.naturalspublishing.com/Journals.asp 2965

modulus of elasticity,f (T ) = 1 Equations (1)-(9) will
become,

ρ [ü+ Ω × (Ω × u)+2Ω × u̇]i = f (T )[λ ∗
0 ϕ∗

,i

+(λ2+ µ0)u j, ji +(µ0+ k0)ui, j j + k0εi jlϕl, j − γ0T,i]

+ f, j[λ ∗
0 ϕ∗δi j +λ2ur,rδi j + µ0u j,i

+(µ0+ k0)ui, j + k0εi jlϕl − γ0T δi j] (10)

f (T )[γ0 φ2, j j −2k0φ2 + k0(u1,3− u3,1)]+ γ0 f, jφ2, j

= jρφ̈2, (11)

f (T )(α∗
0φ∗

, j j −
1
3

λ3φ∗ −
1
3

λ ∗
0 u j, j +

1
3

γ∗1 T )

=
3
2

ρ jφ̈∗, (12)

K∗ T, j j +K Ṫ, j j = ρ CE T̈ + f (T )(γ̂∗0 T0 ë + γ̂∗1T0φ̇∗).
(13)

Where

γ̂ = (3λ + 2µ + k)αt1
, γ̂1 = (3λ + 2µ + k )αt2

and,

∇2 =
∂ 2

∂ x2 +
∂ 2

∂ z2 (14)

The constantŝγ and γ̂1depend on the mechanical as well
as the thermal properties of the body and the dot denote
the partial derivative with respect to time,αt1, αt2are the
coefficients of linear thermal expansions. For convenience,
the following non-dimensional variables are used:

x̄i =
ω∗

c2
xi, ūi =

ρc2ω∗

γ0T0
ui, t̄ = ω∗t , T̄ =

T
T0

,

σ̄i j =
σi j

γ0T0
, m̄i j =

ω∗

c2γ0T0
mi j, φ̄2 =

ρc2
2

γ0T0
φ2,

λ̄3 =
ω∗

c2γ0T0
λ3, φ̄∗ =

ρ c2
2

γ0 T0
φ∗, ω∗ =

ρ CEc2
2

K∗
,

Ω̄ =
Ω
ω∗

, c2
2 =

µ0

ρ
. (15)

Using (15), Eqs. (10)-(13) become (dropping the bar for
convenience)

[ü+ Ω × (Ω × u)+2Ω × u̇]i =
f (T )

c2
2

[λ ∗
0 ϕ∗

,i

+λ2+ µ0u j, ji +(µ0+ k0)ui, j j]+ k0εi jlϕl, j −ρc2
2T,i]

+
f, j

ρc2
2

[λ ∗
0 ϕ∗δi j +λ2ur,rδi j + µ0u j,i

+(µ0+ k0)ui, j + k0εi jlϕl −ρc2
2Tδi j] (16)

f (T )

jρc2
2

[γ0 φ2, j j −
2k0c2

2

ω∗2 φ2 +
k0c2

2

ω∗2 (u1,3− u3,1)]

+
γ0

jρc2
2

f, jφ2, j = φ̈2, (17)

f (T )[
α0

c2
2

φ∗
, j j −

1
3

λ3

ω∗2 φ∗−
1
3

λ ∗
0

ω∗2 u j, j +
1
3

γ∗1ρc2
2

γ0ω∗2 T ] =
3
2

ρ jφ̈∗,

(18)

ε2 (
∂ 2T
∂x2 +

∂ 2T
∂ z2 ) + ε3 (

∂ 2Ṫ
∂x2 +

∂ 2Ṫ
∂ z2 )

= T̈ + f (T )(ε1 ë+ ε4
∂ φ∗

∂ t
). (19)

Where

ε1 =
γ2
0 T0(1−β ∗T0)

ρ2CEc2
2

, ε2 =
K∗

ρCEc2
2

, ε3 =
Kω∗

ρCEc2
2

and ε4 =
γ̂0 γ∗1T0(1−β ∗T0)

ρ2CEω∗c2
2

.

We have taken the special case of
∣

∣(T −T0)
/

T0
∣

∣<< 1i.e.,
infinitesimal temperature deviation from reference
temperature are considered. Thereforef (T )can be taken
in the formf (T ) = 1− β ∗T0, whereβ ∗is an empirical
material constant. Also introducing the dimension less
scalar potential functionsφ(x, z, t)andψ(x, z, t)defined by
the relations,

u =
∂ R
∂ x

+
∂ ψ
∂ z

, w =
∂ R
∂ z

−
∂ ψ
∂ x

(20)

Equations (16) in component form will become,

(∇2+ a0Ω2− a0
∂ 2

∂ t2 )R+2Ωa0
∂ψ
∂ t

+ a1ϕ − a′0T = 0

(21)

(∇2+ a2Ω2− a2
∂ 2

∂ t2 )ψ −2Ωa2
∂R
∂ t

− a3ϕ2 = 0 (22)

(∇2−2a4− a5
∂ 2

∂ t2 )φ2+ a4∇2ψ = 0, (23)

(a6∇2− a7−
∂ 2

∂ t2 )φ∗− a8∇2R+ a9T = 0, (24)

[(ε2 + ε3
∂
∂ t

)∇2−
∂ 2

∂ t2 ] T = ε1 ë+ ε4
∂ φ∗

∂ t
. (25)
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Where,

c2
1 =

(λ2+2µ0+ k0)

ρ
, c2

3 =
2α∗

0 (1−β ∗T0)

3ρ j
,

c2
4 =

2λ3(1−β ∗T0)

9ρ j
, ;c2

5 =
2λ ∗

0 (1−β ∗T0)

9ρ j
,

a0 =
c2

2

c2
1(1−β ∗T0)

,a′0 =
c2

2

c2
1

,a1 =
λ ∗

0

λ2+2µ0+ k0
,

a2 =
ρ c2

2

(µ0+ k0)(1−β ∗T0)
, a3 =

k0

(µ0+ k0)
a4 =

k0 c2
2

γ0 ω∗2 ,

a5 =
ρ jc2

2

γ0(1−β ∗T0)
, a6 =

c2
3

c2
2

, a7 =
c2

4

ω∗2 , a8 =
c2

5

ω∗2

and a9 =
2γ̂1c2

2(1−β ∗T0)

9γ̂0 jω∗2 .

3 The Solution of the Problem

The solution of the considering physical variables can be
decomposed in terms of normal mode as given in the
following form:

[R, ψ , φ∗,φ2 ,σil ,mil ,T,λz] (x, z, t)

=
[

R̄, ψ̄ , φ̄∗, φ̄2 , σ̄il , m̄il , T̄ , λ̄z
]

(z) exp(ω t + i bx) (26)

Where[R̄, ψ̄, φ̄∗, ϕ̄2 , σ̄il , m̄il , T̄ , λ̄z](z)the amplitude of the
functions,ω is a complex andb is the wave number in thex-
direction. Using (26), then (21)-(25) become

(D2−A1)R̄− a′0 T̄ + a1 φ̄∗+A2ψ̄ = 0, (27)

(D2−A3)ψ̄ − a3 φ̄2−A4R̄ = 0, (28)

(D2−A5) φ̄2+ a4(D
2− b2)ψ̄ = 0, (29)

(a6D2−A6)φ̄∗− a8(D
2− b2)R̄+ a9T̄ = 0, (30)

[ε(D2− b2)−ω2] T̄ − ε1ω2(D2− b2)R̄− ε4ω φ̄∗ = 0.
(31)

Where

D =
d

d z
, A1 = b2+a0(ω2 −Ω2), A2 = 2Ω a0 ω,

A3 = b2+a2(ω2−Ω2), A4 = 2Ω a2 ω,

A5 = b2+2a4+a5ω2, A6 = b2a6+a7+ω2,ε = (ε2+ε3ω).

Eliminating,φ̄2, ψ̄ , R̄, T̄andφ̄∗in (27)-(31), we get the
following tenth order ordinary differential equation

[D10−AD8+BD6−CD4+ED2−F]{φ̄2, ψ̄ , R̄, T̄ , φ̄∗}(z)= 0
(32)

Equation (32) can be factored as

( D2− k2
1) (D2− k2

2)( D2− k2
3)( D2− k2

4)( D2− k2
5)

{φ̄2, ψ̄ , R̄, T̄ , φ̄∗}(z) = 0. (33)

Where,

A = g18/g17, B = g19/g17,C = g20/g17, E = g21/g17,

F = g22/g17,g1 = ε4ω −a1ε1ω2, g2 =−ε4ωA1+a1ε1ω2b2,

g3 = a1(εb2+ω2)+a′0ε4ω,

g4 = A2ε4ω , g5 = A3+A5−a3a4, g6 = A3A5−a3a4b2,

g7 = g2−g1g5,g8 =−g2g5+g1g6+g4A4,g9 = g2g6−g4A4A5,

g10 =−g3−a1εg5, g11 = g3g5+a1εg6, g12 = g3g6,

g13 = a6(εb2+ω2)+A6ε, g14 = ε4a9ω +A6(εb2+ω2),

g15 = ε1a6ω2b2+A6ε1ω2−a8ε4ω,

g16 = ε4 a8 ω b2− ε1 ω2A6b2, g17 = ε(a6 g1+a1 ε1 ω2a6),

g18 =− a6(εg7+ ε1ω2g10)+g13g1+a1 ε g15,

g19 = a6(εg8+ ε1ω2g11)−g13g7+g14g1−a1εg16−g10g15,

g20 =−a6εg9+g13g8−g14g7+g10g16+g11g15+g12a6ε1ω2,

g21 =− g13g9+g14g8−g11g16+g12g15.

g22 =− g14g9−g12g16.

The solution of (33), has the form

R̄ =
5

∑
n=1

Mne− knz, (34)

T̄ =
5

∑
n=1

H1nMne− knz, (35)

ψ̄ =
5

∑
n=1

H2nMne− knz, (36)

φ̄2 =
5

∑
n=1

H3nMne− knz, (37)

φ̄∗ =
5

∑
n=1

H4nMne− knz. (38)

WhereMn are some parameters andk2
n, (n = 1,2,3,4,5)

are the roots of the characteristic equation of (33). Here,

H1n = [k4
n a6ε1ω2− k2

n g15− g16]
/

[k4
n a6ε − k2

n g13+ g14],

H2n = [A4(k
2
n −A5)]

/

[k4
n − k2

n g5+ g6],

H3n = [−a4A4(k
2
n − b2)]

/

[k4
n − k2

n g5+ g6],

H4n = [a8(k
2
n − b2)− a9H1n]

/

[a6k2
n −A6].

4 The Boundary Conditions

The plane boundary subjects to an instantaneous normal
point force and the boundary surface is isothermal, the
boundary conditions atz = 0 are
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1.The mechanical boundary condition is that the surface
of the half-space obeys,

σxx =− p(x, t) ,σzz = σxz = λz = 0. (39)

2.The thermal boundary condition is that the surface of
the half-space is subjects to a thermal shock,

T = f (x, t). (40)

We obtain the non-dimensional expressions for the
displacement components, force stress, coupled stress and
temperature distribution of the microstretch generalized
thermoelastic medium as follows,

ū =
5

∑
n=1

(ib− knH2n)Mne− knz (41)

w̄ =
5

∑
n=1

(−kn − ibH2n)Mne− knz (42)

σ̄xx =
5

∑
n=1

H5nMne− knz, (43)

σ̄zz =
5

∑
n=1

H6nMne− knz, (44)

σ̄xz =
5

∑
n=1

H7nMne− knz, (45)

σ̄zx =
5

∑
n=1

H8nMne− knz, (46)

λ̄z =−
5

∑
n=1

a15knH4nMne− knz. (47)

where

a10 =
λ ∗

0

ρ c2
2
, a11 =

c2
1

c2
2
, a12 =

λ2

ρ c2
2
, a13 =

(µ0+k0)

ρ c2
2

,

a14 =
k0

ρ c2
2

, a15 =
α∗

0ω∗2

ρ c4
2

,

H5n = (1−β ∗T0)[a10H4n + iba11(ib− knH2n)

+kna12(kn + ibH2n)−H1n],

H6n = (1−β ∗T0)[a10H4n + kna11(kn + ibH2n)

+iba12(ib− knH2n)−H1n],

H7n = (1−β ∗T0)[−kn(ib− knH2n)− a13ib(kn + ibH2n)

+a14H3n],

H8n = (1−β ∗T0)[−ib(kn + ibH2n)− kna13(ib− knH2n)

+a14H3n].

Applying the boundary conditions (39) and (40) at the
surfacez = 0 of the plate, we obtain a system of five
equations. After applying the inverse of matrix method,











M1
M2
M3
M4
M5











=











H52 H52 H53 H54 H55
H61 H62 H63 H64 H65
H71 H72 H73 H74 H75

k1H41 k2H42 k3H43 k4H44 k5H45
H11 H12 H13 H14 H15











−1









− p̄
0
0
0
f̄











(48)
We obtain the values of the five
constantsMn,n = 1,2,3,4,5. Hence, we obtain the
expressions for the displacements, the force stress, the
coupled stress and the temperature distribution of the
microstretch generalized thermoelastic medium.

5 Particular Cases

Case 1: The corresponding equations for the
generalized micropolar thermoelasticity elastic medium
without stretch can be obtained from the above mentioned
cases by taking:

α0 = λ0 = λ1 = ϕ∗ = 0 (49)

After substituting (49) in (1)-(7) and using (22), (28) and
(34) we get

(D2−A1)R̄+A2ψ̄ − a′0T̄ = 0, (50)

(D2−A3)ψ̄ −A4R̄− a3φ̄2 = 0, (51)

[D2−A5] φ̄2+ a4(D
2− b2)ψ̄ = 0, (52)

[ε(D2− b2)− ω2] T̄ = ε1 ω2(D2− b2)R̄. (53)

Eliminatingφ̄2, ψ̄ , R̄andT̄ in (50)-(53), we get the
following eight order ordinary differential equations
forφ̄2, ψ̄ , R̄ and T̄ .

[D8−AD6+BD4−C D2+E] { φ̄2, ψ̄ , R̄, T̄}(z) = 0
(54)

Equation (54) can be factored as

( D2− k2
1)(D2− k2

2)( D2− k2
3)( D2− k2

4) {φ̄2, ψ̄ , R̄, T̄}(z) = 0.
(55)

Where

A = g′6
/

ε, B = g′7
/

ε, C = g′8
/

ε, E = g′9
/

ε,

g′1 = a′0ε1ω2+ εb2+ω2+ εA1,g
′
2 = a′0ε1ω2b2

+εb2A1+ω2A1,g
′
3 = εb2+ω2,g′4 = A3+A5− a3a4,

g′5 = A3A5− a3a4b2, g′6 = εg′4+ g′1,

g′7 = εg′5+ g′1g′4+ g′2+A2A4ε,
g′8 = g′1g′5+ g′2g′4+A2A4(g

′
3+ εA5),

g′9 = g′2g′5+A2A4A5g′3
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The solution of (56) has the form

R̄ =
4

∑
n=1

Zne− knz, (56)

T̄ =
4

∑
n=1

H ′
1nZne− knz, (57)

ψ̄ =
4

∑
n=1

H ′
2nZne− knz, (58)

φ̄2 =
4

∑
n=1

H ′
3nZn e− knz. (59)

Wherezn are some parameters and k2
n, (n = 1,2,3,4) are

the roots of the characteristic equation of (55) and

H ′
1n = [ε1ω2(k2

n − b2)]
/

[ε(k2
n − b2)−ω2],

H ′
2n = [A4(k

2
n −A5)]

/

[k4
n − k2

n g′4+ g′5],

H ′
3n = [− a4A4(k

2
n − b2)]

/

[k4
n − k2

n g′4+ g′5].

This gives the required expressions for the displacement
components, force stress, coupled stress and temperature
distribution of the medium as follows

ū =
4

∑
n=1

(ib− knH ′
2n)Zne−knz, (60)

w̄ =
4

∑
n=1

(−kn − ibH ′
2n)Zne−knz, (61)

σ̄xx =
4

∑
n=1

H ′
4nZne− knz, (62)

σ̄zz =
4

∑
n=1

H ′
5nZne− knz, (63)

σ̄xz =
4

∑
n=1

H ′
6nZne− knz, (64)

σ̄zx =
4

∑
n=1

H ′
7nZne− knz. (65)

Where

H ′
4n = iba11

(

ib− knH ′
2n

)

+ kna12
(

kn + ibH ′
2n

)

−H ′
1n,

H ′
5n = kna11

(

kn + ibH ′
2n

)

+ iba12
(

ib− knH ′
2n

)

−H ′
1n,

H ′
6n =−kn(ib− knH ′

2n)− a13ib
(

kn + ibH ′
2n

)

+ a14H
′
3n,

H ′
7n =−ib(kn + ibH ′

2n)− kna13
(

ib− knH ′
2n

)

+ a14H
′
3n.

Applying the boundary conditions
σxx = − p(x, t), σzz = σxz = 0, T = f (x, t) at the
surfacez = 0 of the plate, we obtain a system of four
equations. After applying the inverse of matrix method,







Z1
Z2
Z3
Z4






=







H ′
41 H ′

42 H ′
43 H ′

44
H ′

51 H ′
52 H ′

53 H ′
54

H ′
61 H ′

62 H ′
63 H ′

64
H ′

11 H ′
12 H ′

13 H ′
14







−1





− p̄
0
0
f̄






(66)

We obtain the values of the four constantsZn,n= 1,2,3,4.
Case 2: The corresponding equations for the

displacement, stresses and temperature distribution
functions are obtained for generalized thermoelastic
medium with stretch can be derived by using
k = α = β = γ = 0 in (34)-(38).

Case 3: The equations for displacement, stresses and
temperature distribution function for generalized thermo
microstretch elastic medium without rotating medium will
be obtained by assumeΩ → 0.
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GN−III (Ω=0)
GN−III (Ω=1)

Fig. 1: Temperature distribution against z for rotational
frequency

6 Numerical Results and Discussions

In order to illustrate our theoretical results obtained in the
preceding section and to compare theories of
thermoelasticity, we now present some numerical results.
In the calculation, we take a magnesium crystal, the
micropolar parameters are taken as Othman and Lotfy[28]
, thermal characteristic as Prafitt and Eringen [34]and
stretch parameters as Lotfy and Othman . As the material
subjected to mechanical and thermal disturbances,
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Fig. 2: Normal Stress distribution against z for rotational
frequency

sinceω is a complex constant,we takeω = ω0 + i ζwith
ω0 =−1andζ = 1.The physical constants used are

ρ = 1.74×103 kmm−3, j = 0.2×10−19 m2,

λ ∗
2 = 9.4×1010 N m−2, T0 = 298K, t = 0.1s,

µ0 = 4.0×1010 Nm−2,k0 = 1×1010 Nm−2,

γ0 = 0.779×10−9 N,αt1 = 0.05×10−3K−1, f̄ = 0.5,

αt2 = 0.04×10−3K−1, K = K∗ = 1.7×102Jm−1s−1K−1,

λ0 = 2.1×1010 Nm−2,CE = 1.04×103J kg−1K−1

λ ∗
3 = 0.7×1010 Nm−2, α0 = 0.779×10−9 N,

ε1 = 1.8, ε2 = 1.7, ε3 = 1, p̄ = 0.2.

The change in amplitudes of field variables against a
vertical component of distance in the context of Green
and Naghdi theory of both types II and III for generalized
thermo-micro-stretch medium is represented graphically.
Figs. 1-4 show the variation in field variables by the
angular frequency in these figures we have adjusted
reference temperature by fixingβ ∗ at 0.0126, while Figs.
5-8 represent the variation in field variables for different
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Fig. 3: Displacement distribution against z for rotational
frequency
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Fig. 4: Microstress distribution against z for rotational frequency

value of two temperature parameter. In these figures solid
lines and dashed lines for GN-II, dashed with dot and
dotted lines are for GN-III at Ω = 0 and
Ω = 1respectively, it is more precisely explained in each
figure. Fig. 1 explains the amplitude of temperature
distribution against a vertical component of distance. In
this figure we have considered the effect of rotational
frequency onT .It is observed that rotational frequency
increases the amplitude ofT for GN-II, but for GN-III the
effect of rotation is negligible in the present selected
parameters. Both the curves converge to zero for
sufficient large values of vertical distance. Fig. 2 depicts
the stress distribution functions against vertical distance
components. In both the components of stressσxxandσzz
rotation is having an increasing effect on both the theories
of GN. Maximum amplitude forσxxis obtained for with
energy dissipation and in the presence of rotational
frequency but forσzz maximum amplitude of the stress
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Fig. 5: Temperature distribution against z for different values of
β ∗ = 0.0126, .05,0.1

distribution function is obtained from without energy
dissipation. Fig. 3 shows the distribution of the horizontal
component of displacement becomes oscillating in the
presence of rotational frequency. It can also be seen that
in the presence of rotational frequency curves of
displacement distribution function for GN-III are higher
than the curves for GN-II. All curves converge to zero but
the curves without rotation converge to zero faster. In the
graphs of microstretch distribution function rotational
frequency reduces the micro-stress component for GN-II
but in the presence of energy dissipation rotation have
increasing effect. Fig. 4 depicts the distribution of
micro-stress, it can be seen that in the presence of
rotational frequency, curves of micro-stress distribution
function for GN-III are higher than the curves for the
GN-II. All curves converge to zero but the curves without
rotation converge to zero faster. Figs. 5-8 are representing
the behavior of field variables for different value of
empirical constant. In these sets of figures we have fixed
the medium on rotation with angular frequencyΩ = 1.
The figures contain the curves with following
presentations

—- is for GN-IIβ ∗ = 0.0126; .......is for GN-IIβ ∗ =
0.05; -.-.-.-. is for GN-IIβ ∗ = 0.1; + + + is for GN-IIIβ ∗ =
0.0126; * * *is for GN-III β ∗ = 0.05 o o o is for GN-III
β ∗ = 0.1

Fig. 5 depicts the variations in temperature
distribution function for different values of empiric
material constant. For GN-II and GN-III amplitude ofT
is directly proportional to that ofβ ∗i.e., by increasing the
intensity ofβ ∗ amplitude of the temperature distribution
function also increases. It can also be seen that starting
point of temperatureT for each value ofβ ∗ is same for
both theories of the GN with curves of GN-II while,
having great amplitude as compared to those of GN-III. It
indicates that energy dissipation is having decreasing
effect on temperature distribution. All curves converge to
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Fig. 6: Stresses distribution functions against z for different
values ofβ ∗ = 0.0126, .05,0.1

zero as the vertical distance from the surface increases
satisfying the condition of surface waves. The variation in
field variablesσxx,σxx,u,w andλz is represented in Fig.
6,7 and 8.It can be seen clearly from these figures that
curve for each variable increases while increasing the
value of intrinsic material constantβ ∗For both
components of the normal stresses and displacement
distribution function maximum amplitude of stress
distribution functions for are obtained under GN-III for
β ∗ = 0.but for micro-stress distribution function
maximum amplitude is obtained under GN-II for
β ∗ = 0.1

7 Conclusion

In this article the effect of rotational frequency on plane
waves in a generalized thermo-microstretch elastic media
is studied in addition we have also encountered the
influence of reference temperature on field variables. By
analysing the graphical behaviour we have concluded the
following important pionts
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Fig. 7: Displacement distribution function against z for different
values ofβ ∗ = 0.0126, .05,0.1

1- In curves of temperature distribution function it is
being observed that the amplitude for obtained by GN-II
is less than the amplitude obtained from the GN- III in the
absence of rotational frequency, while in the presence of
rotational effect behavior of temperature distribution
changes. Rotation of medium plays a significant role in
the propagation of the wave through the medium.
2- Rotation is having an increasing effect on the
distribution function of each field Variable accept
micro-stress distribution function in which it has small
decreasing effect.
3- By increasing the intensity ofβ ∗effect of energy
dissipation also increases on field variables. Hence we
can say that reference temperature has very significant
impact on wave propagation through the medium.
4. Greater the value ofβ ∗ greater the amplitude of normal
stress distribution functions and micro-stress distribution
function againstz. It also increases the exponential
behavior of stress propagating through the medium.
5- All the curves converges to zero as distance from
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Fig. 8: Microstress distribution against z for different values
ofβ ∗ = 0.0126, .05,0.1

surface of medium increases, this satisfies the condition
for surface wave propagation.
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