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Abstract: Plane waves propagating in generalized thermoelastic $gte rotating with specific angular frequency has been
investigated. The appropriate model of the problem in cargéGreen and Naghdi theory is generated, while moduludasttieity is
taken as a linear function of reference temperature. Antex@aroach of normal mode analysis method is implementedtairothe
expression for the displacement components, stressesmapeitature distribution functions. The variations of thesidered variables
against the vertical distance are illustrated graphicatigt a comparison is made for results predicted by both tlegiggein presence
and absence of rotation effect we have also encounteredféiut lrecause of temperature involved in elastic pararaeter
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1 Introduction material points of microstretch elastic solids can stretch
and contract independently of their translations and
The linear theory of elasticity is of paramount rotations. The basic results in the theory of micro stretch
importance in the stress analysis of steel, which is theelastic solids were obtained in the literatuxje]8].
commonest engineering structural material. To a lesser The theory of thermo-micro-stretch elastic solids was
extent, linear elasticity describes the mechanical bemavi introduced by Eringe] . In the framework of this
of the other common solid materials, e.g. concrete, woodheory Eringen established a uniqueness theorem for the
and coal. However, the theory does not apply to themixed initial-boundary value problem. The theory was
behavior of many of the new synthetic materials of theillustrated through the solution of one-dimensional waves
clastomer and polymer type. The linear theory ofand compared with lattice dynamical results. The
micropolar elasticity is adequate to represent the behavioasymptotic behavior of solutions and an existence result
of such materials. For ultrasonic waves the influence ofwere presented by Bofill and Quintanilld] . A
the body microstructure becomes significant, thisreciprocal theorem and a representation of Galerkin type
influence of microstructure results in the development ofwere presented by De Cicco and Nagddd[. De Cicco
new types of waves is not in the classical theory ofand Nappal? extended a linear theory of
elasticity. Metals, polymers, composites, solids, rocks,thermo-microstretch elastic solids that permits the
and concrete are typical media with microstructures.transmission of heat as thermal waves at finite speed. The
More generally, most of the natural and man-madetheory is based on the entropy production inequality
materials including engineering, geological and proposed by Green and Law§] . The basic results and

biological media possess a microstructure. an extensive review of the theory of thermo-microstretch
Eringen and Suhuli] and Eringeng)]- [4]developed elastic solids can be found in the book of Eringgn[
the linear theory of micropolar elasticity and microsttretc Most of the investigations were done under the

elastic solids. This theory of microstretch thermoeldtstic assumption of temperature-independent  material
is the generalization of the theory of micropolar elasficit properties, which limit the applicability of the solutions
and a special case of the micromorphic theory. Theobtained to certain ranges of temperature. Modern
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structural elements are often subjected to temperaturéhermoelastic plate is rotating uniformly with an angular
change of such magnitude that their material propertiesrequencyQ = Q n, wherenis a unit vector representing
may be longer be regarded as having constant values evehe direction of the axis of rotation. The basic governing
in an approximate sense. At high temperature the materiatquations of linear generalized thermoelasticity with
characteristics such as modulus of elasticity, thermalotation in the absence of body forces and heat sources
conductivity and the coefficient of linear thermal are

expansion are no longer constad#[. The thermal and Ojij = pli+ Q x (Qxu)+2Q xuj, Q)
mechanical properties of the materials vary with

temperature, so the temperature-dependent on the 92

material properties must be taken into consideration in the &jrOjr +Mmjij=jp ?7 )
thermal stress analysis of these elements. Othman and ot

Kumar[l5 investigated the dependence of modulus of

elasticity on reference temperature in generalized 3 3¢
magneto-thermo-elasticity and obtained interesting agC%¢" — /\1q0 ——)\0( u)+ = le = pj FTZR
results. Yousselflg] used the equation of generalized t ©)

thermoelasticity with one relaxation time with variable
modulus of elasticity and the thermal conductivity to
solve a problem of an infinite material with spherical - e . 0Q*
cavity. P P K*O?T +KO?T = pCeT + yToli; +V1To—;z :
Green and Naghdi[7]-[19] proposed another three
models, which are subsequently referred to as GN-I, Il
and Ill models. The linearized version of model-I
corresponds to the classical thermoelastic model-Il the

(4)

Gil = (Ao@" + A Urr) & + (U +K) Ui+ pu —Keir@ — YT &y,

internal rate of production of entropy is taken to be ®)
identically zero implying no dissipation of thermal _ .

energy. This model admits un-damped thermoelastic mi=a@di+ Ba) + vy, (6)
waves in a thermoelastic material and is best known as the

theory of thermoelasticity without energy dissipation. Ai = a0 @i, (7
Model-Ill includes the previous two models as special

cases, and admits dissipation of energy in general. du  aw

Othman RQ] constructed a model of the two-dimensional e= Ix + e (8)

equations of generalized thermoelasticity with two
relaxation times in an isotropic elastic medium with the WherelT is the temperature above the reference
modulus of elasticity being dependent on the referencéemperatur chosen so thaf(T —To) /To| << 1A,
temperature. Lotfy and Othma@1] studied the effect of are the counterparts of Lame parameters, the components
rotation on generalized thermo-microstretch elasticof displacement vecter araj,tis the time, gjjare the
medium under different theories. Recently some authorsomponents of stress tenseis the dilatationgjare the
discussed different types of problems in generalizedcomponents of strain tensorj the micro inertia
thermo-microstretch elastic medium (Ma22]-[23 momentg*is the scalar microstretap, is the rotation
BaljeetR4] , Kumar[25-[26] Othman et al. 27]-[2§] , vectormj is the couple stress tensdy; is the Kronecker
Ellahi et al. R9-[33)). delta, &jris the alternate tensor, the mass densipy,tise

This paper presents an attempt to examine thespecific heat at constant strainCis, the thermal
temperature dependency of elastic modulus and rotatiogonductivity is K*and Kmaterial characteristic of the
on the behavior of two-dimensional solution in a theory. The state of plane strain parallel to #yeplane is
generalized thermo-microstretch elastic medium. We havelefined by
also encountered the fascinating theories of generalized
thermoelasticity presented by Green and Naghdi. We have
adopted normal mode analysis method and find the U= U(X,zt),uz =0,u3=w(X,zt),¢1=¢d3=0, (9)
expressions for field variables.

®=@(xzt),¢" =" (xz2t), 2=(0,Q,0).

We assume that

A =228 (T), = pof(T),y=1f(T),Ao=
We obtain the constitutive and the field equations for a k= k,f (T),B=PBof(T),a=a1f(T),y=
linear isotropic generalized thermo-microstretch etasti o= ag f (T), A= Ag f(T), ¥4 = ¥4 £(T)
solid in the absence of body forces. We use a rectangular ° 1=73
coordinate systefw,y,z) having originated on the surface Wheref(T) is a non-dimensional function depending on
y = 0 and z-axis pointing vertically into the medium. The temperature, during the case of temperature independent

2 Formulation of the Problem

Ao F(T),
o f(T),

f
(
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modulus of elasticity,f(T) = 1 Equations 1)-(9) will
become,
f(T 2koC3 |<0<:2
—-( g[Vofpz,n— o2 2ty —Z(up3—Us1)]
pli+ Q x (Qxu)+2Q x Ui = f(T)[A;¢; 1PC;
+ (A2 + Ho) uj.ji + (Mo + ko) Ui jj + Ko&iji @1,; — YoTi] + jp—c2f’j¢2*j =@, a7)
+ fj[Ag@"&ij + A2ur &ij + Hou 2
+(Ho + ko) ui,j + ko&iji ¢ — yoT & 10
(P‘O ) i, I]|¢| Yo J] ( ) f(T)[GO 5 1 A 1 )\ 1WPCZ ]
EACIETT ~3072 JJ+3y0w*2 *ZPJ‘Pv
(18)
f(T)[¥o ®.jj —2ko@ + Ko(Urz — Uz 1)] + o f j@2 ]
=ipe, (11) , ,
g 00T 0T 0fT 0T
2(0x2Jr 0722)Jr 3(0x2+ 0722)
F(T) (0o @j; — 339" — FAoui + 34 T) = 7 +f(T)(£1é+£4a£ ). (19)
3 ..
== 3 12
SPI, (12) Where
. . . _®T(l-pT) K K
K*Tjj+KTj=pCeT + f(T)(J5 To& + fiTow"). pCecz ° pCed O pCecl
(13)
Where and &= M
p2Ce w*c3

7=(A+2u+Kay, §=(3\+2u+k)ay, and,
02
0z

02

o (14)

02 =

We have taken the special casd @F — To) /To| << 1i.e.,
infinitesimal temperature deviation from reference
temperature are considered. TherefdiE)can be taken

The constanty and yydepend on the mechanical as well in the formf (T) = 1 — 8*Tp, wherg8*is an empirical
as the thermal properties of the body and the dot denotenaterial constant. Also introducing the dimension less

the partial derivative with respect to timey,, o, are the

scalar potential functiongXx, z, t)and(x, z t)defined by

coefficients of linear thermal expansions. For convenigncethe relations,

the following non-dimensional variables are used:

R v, R 0y

. * _ £ _ _ T —_ -
xizﬂxi, U = pea U, t=wt,T=—=—, ax 0z’ 0z ax (20)
C2 yoTo To
_ T w* - p Equations 16) in component form will become,
Gi— — m = _
" %o mi CzVoTomj %= (Pz 52 5
e Y o - p_c%(p*7 o — CEC? (0% + apQ? — dt2>R+ZQa°d_w +agp —apT =0
C2Y6 To ¥ To K~ (21)
5:%,%:%. (15) .
02+ aQ% - a, 2Qa;— —agpp=0 (22
Using (15), Egs. (0)-(13) become (dropping the bar for (2 Zdtz)w 2ot 392 (22)
convenience)
2 9° 2
(07— 2a4— a5 57) @2+ aal"y = 0, (23)
. f(T
[+ Q x (Qxu)+2Q xU)j = %[)\Sdﬁ
2 2
o .
“+A2+ Houj.ji + (Ho+ko)Uijj] + ko&iji 41 j — PC3T.] (860" — a7 — el aR+aT =0 (24)
f .
+%2[A5¢*dj+)\zur,rdj+uouj,i
pc; ., 02 ag
+(Ho+ ko) i j + kotiji 1 — pc5T & ] (16) (2 +eaz)0 ~ Gl T= aétaag. (25)
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Where,
2 (A2+2Up+ko) 2_ 205 (1—B*To)
Cl— P A Y
o 30 ]
1—-B*To) 2A5(1—B"To)
@ - 2l , jCE= 0 :
4 CRY ° Wi
5 .G Ag
= ) - _7a =
O 2L T T 2T 2wtk
pc3 ko koc3
a = % a3 = = %2
(Ho+ko)(1—B*To)’ (Mo + ko) Yo w
 pid g < _ ck
~ 2hc5(1-BTo)
and ag = N0

3 The Solution of the Problem

The solution of the considering physical variables can be
decomposed in terms of normal mode as given in the R—

following form:

[Ra qJ_a (0*720270_]|7m| 7T7)‘Zl(§7 Z, t)
= [Ra Lﬁa €0*7 an_-ihrﬁh-rv/\Z} (Z) exp(wt+| bX) (26)

WhereR, §, ¢, §2,0,m, T, A7 (2)the amplitude of the

functions,wis a complex anth is the wave number in tixe
direction. Using 26), then @1)-(25) become

(D’—A)R—ayT+ar @ +A=0,  (27)
(D*—Ag)f —a3» — AR=0, (28)

(D? — As) @2+ aa(D* —b*)§f = (29)
(a6D?— Ao)¢" —ag(D2—b?)R+agT =0,  (30)

[£(D? —b?) — ?] T — £, (D? — b?)R— g400¢° = 0.
(31)
Where
D= d% A =b?+ag(w? —Q?), Ay =2Qayw,
A3:b2+a2(w2—§22)7 As=2Q ar w,

As=b?+2a,+asw?, Ag=b’ag+ar+w?, e = (&r+8&3w).

Eliminating g, ¢/, R, Tandp*in (27)-(31), we get the

following tenth order ordinary differential equation

[D'0—AD®+BD®~CD*+ED*~Fl{%, §.R T,¢'}(2) =
(32)
Equation 82) can be factored as
(D?-K) (D?-K)(D? k2>< kg><D2_kg>
{@.U.RT,¢'}2) = (33)

0

Where,

A= g18/017, B =019/017,C = 020/917, E = G21/017,

F = 022/017,01 = 40— 1 €107, Gp = —E4WA1 + a8 W07,
g3 = a1 (£b” + w?) + 8pE4w,

Q= Aogs, s =Ag+As—agay, Us = AgAs — agaub?,

07 = 92— 0195,08 = —0205 + 9106 + 941, 9o = G206 — GaAuAs,
010= —03 — €05, O11= 9305+ a1€0s, J12 = U3Je,

O3 = ag(£b” + w?) + AeE, G14 = E4d0w+ Ag(eb? + W),

15 = £186W°H% + Age1w? — agEsw,

O16 = €288 WD — €1 WPAGL?,  g17 = £(as 01+ 81 &1 W7ag),
G168 = — 86(£97 + &1 W?Q10) + J1301 + 81 £ 15,

010 = ag(€9s + €1w2911) — 01397 + 01491 — 21€016 — 910915,
G20 = — 8609 + 01308 — 91497 + 010016 + 911015+ J1286E1 W7,
021 = — 01399 + 91498 — 911916 + 912015

022 = — 01499 — 912016

The solution of 83), has the form

Mne™ k0?2, (34)
n=1
_ 5
T=3 HiMne 7, (35)
n=1
5
w — Z HZnMne an, (36)
n=1
_ 5
@ =3 HaMne™ 4%, (37)
_ 5
@ =3 HaMne™ ¥ (38)
n=1

WhereM,, are some parameters arfdkn = 1,2,3,4,5)
are the roots of the characteristic equation38)( Here,

Hin = (K3 a6€100” — K3 015 — G1g] / (K a6€ — K3 013+ 014,

Hon = [Aa(K3 — As)] /(K3 — K305+ el

Han = [—asAu(K; — b?)] /(K3 — K305 + el
Han = [ag(k2 — b?) — agH1n] /[a6k? — Ag).

4 The Boundary Conditions

The plane boundary subjects to an instantaneous normal
point force and the boundary surface is isothermal, the
boundary conditions at= 0 are

(@© 2015 NSP
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1.The mechanical boundary condition is that the surfaceApplying the boundary conditions39) and @0) at the
of the half-space obeys, surface = 0 of the plate, we obtain a system of five

equations. After applying the inverse of matrix method,
Ox = — P(X,t),0z=0¢=A,=0.  (39)

2.The thermal boundary condition is that the surface of /M, Hs; Hsp Hss Hsa Hss \ * /—p°
the half-space is subjects to a thermal shock, M, He1 He2 Hes Hes Hes 0
Mz | =| Hzn Hzz Hzz Hza Hrs 0

T=1f(xt). (40) My KiHa1 koHaz kaHaz kaHaa ksHas 0

We obtain the non-dimensional expressions for the Ms Hii Hiz Hiz Hia His f

displacement components, force stress, coupled stress and (48)

temperature distribution of the microstretch generalizedVeé ~ obtain  the = values  of  the  five
thermoelastic medium as follows, constant®,,,n = 1,2,3,4,5. Hence, we obtain the

expressions for the displacements, the force stress, the

_ 5 coupled stress and the temperature distribution of the
U= (ib—kyHzn)Mne™ *2 (41)  microstretch generalized thermoelastic medium.
n=1
J— 5 -
W=y (—kn—ibHzn)Mqe™ 2 (42) 5 Particular Cases
n=1
5 Case 1: The corresponding equations for the
Oy = Z HgaMne™ k2, (43) generalized micropolar thermoelasticity elastic medium
n=1 without stretch can be obtained from the above mentioned
s cases by taking:
g — — kn
0z 2, Mealtoe (44 do=Ao=h =" =0 (49)
5 After substituting 49) in (1)-(7) and using 22), (28) and
Oxz = z HznMne™ "2, (45) (34) we get
n=1 _ _
. (D? — AR+ A — & T =0, (50)
Op = z HgnMnhe™ knz’ (46)
= (D2~ Ag) — AR — a2 = 0, (51)
_ 5
Az=—Y aysknHanMne™ 2. 47 — -
0= g Puskaltalle “n D>~ Ag| o +as(D*~bA)F=0,  (52)
where 2 2 21 272 12\B
o z X :ﬁ Mo _ (Hotko) | .[e(.D :b_):w]_T .=£1w(D —b° )R (53)
T2 M@ T BT T pZ 0 Eliminatingg, ¢,RandT in  (50-(53, we get the
2 following _eight order ordinary differential equations
ags— -0 a15:a°—w. forg, ,RandT.
14 pC%7 pcg s s ¥ - -
, , D8 —AD®+BD*—-CD?+E|{®,y,RT}(z) =0
Hsn = (1— B To)[a10Han +ibaqs(ib — kaHzn) [ I )@ (54)
+knag2(kn + ibHzn) — Hap), Equation B4) can be factored as

(D?2—K2) (D? — K3)(D?—K3)( D2~ Kf) {2, ,R, T }(2) = O.
Hen = (1 — B"To)[a10Han + knaz1(kn + ibHzn) (55)

. . Where
+ibago(ib — knHzn) — Hip), ) . ) .
A=gs/e, B=0d;/e, C=0gg/e, E=0gy/e,

01 = ape1w? + eb? + w? + €A1, 05 = aper w?h?

Hin = (1= B"To)[—kn(ib = knHzn) — a1ib(kn + IbHzn) +ED?A1 + WA, 0 = €b% + w?, g, = Ag + As — agau,

) 05 = AsPs — agaub?, s = €0+ 0},
97 = €05+ 0104 + 0 + AoAve,
Hgn = (1— B*To)[—ib(kn +ibH2n) — knaya(ib — knHan) O = 0105 + 9504 + A2A4 (03 + €As),
+ag4H3n). o = 0205 + A2A4As0;
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The solution of §6) has the form

4 I P I\ ih_ ! !
5 z — (56) H7n = —ib (kn +ibH5,) — knaus (ib — knH2,) + a14H3,.
n=1 Applying the boundary conditions
4 Oxx = — p(X,t), Oz = Oyxz = 07 T = f(X,t) at the
T— N H/.Z.e kz (57) surfacg = 0 of the plate, we obtain a system of four
& nen ' equations. After applying the inverse of matrix method,
4 / / / / -1 .
_ _ Z; H;, Hy, Hi2 H -p
(IJ = HénZne an’ (58) Z2 HL/11 HL}Z Hé/13 Hé/14 0
& el ol L I (66)
4 zi HIy H H o H f
®= Z Hénzne, an. (59) 11 ""12 "'13 " '14
n=1 We obtain the values of the four constaditsn= 1,2, 3,4.
Wherez, are some parameters anél kn = 1,2,3,4) are ~ Case 2: The corresponding equations for the
the roots of the characteristic equation 5and displacement, stresses and temperature distribution

functions are obtained for generalized thermoelastic
medium with stretch can be derived by using
Hin = [e10%(K; — b%)] /(G — b?) — o], k=a=B=y=0in(34-(39.
Case 3: The equations for displacement, stresses and
temperature distribution function for generalized thermo
Hz, = [Aa(kg — As)] /[y — KA + O5), microstretch elastic medium without rotating medium will
be obtained by assurfie— 0.

Han = [~ auPa (kg —b%)]/ [k — ki d + g
This gives the required expressions for the displacement

components, force stress, coupled stress and temperature 015

distribution of the medium as follows - [—oavie
U= Y (ib—keH}y)Zoe 2, (60) os| S
n=1
4 0
W=Y (—kn—ibHj,) Zhe 7, (61) !
n—=1 -0.05
— 4 ’ -0.1
Ox = 3 HinZne 7, (62)
n=1 -0.15
B 4
Oy = z Hénzne_ k”Z, (63) 0% o5 1 15 2 25 3 5 4 s
n=1 z
G — iHénZne, an’ (64) fFrieg.U;]CTemperature distribution against z for rotational
& q y
B 4
On = z HYZne™ 92, (65)
n=1
Where 6 Numerical Results and Discussions
Hin = ibas (ib_ anén) + knaz (kn + inén) —Hin, In order to illustrate our theoretical results obtainedhie t

preceding section and to compare theories of
thermoelasticity, we now present some numerical results.
r_ S - e AT, In the calculation, we take a magnesium crystal, the
Hen = ko1 (ka + ibHz,) + ibaya (b —koHzn) — Hin, micropolar parameters are taken as Othman and L28fy[
, thermal characteristic as Prafitt and Ering&4]and
stretch parameters as Lotfy and Othman . As the material
Hen = —kn(ib — knH2,,) — @13ib (kn + ibH3,) + a14H3,, subjected to mechanical and thermal disturbances,
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35 T T T 0.8 T T T
—— GN-II (Q=0) —— GN-II (Q=0)
I NEASEN — — —GN-I1(Q=1) |{ — = ~GN-II(Q=1)
AN —-— GN-IIl (Q=0) 06 —-— GN-IIl (Q=0)| ]
25 // \ GN-IIl (Q=1)) 1 - GN-IIl (Q=1)
1 \\
2r 1 \
1 A\
1 \
o 15, \
z | N\
1 \\
I N
J N
05 AN
l o T~ =
0 _ - - = — = L=
-0.5 B
0 0.5 1 15 2 25 3 35 4 45 0.5 1 15 2 25 3 35 4 45
z z
1 ‘ E— Fig. 3: Displacement distribution against z for rotational
—— GN-11 (Q=0)
LGN (1) frequency
osF 7 T T~ —-— GN-IIl (Q=0)|
/ =< GN-Ill (Q=1)

Fig. 22 Normal Stress distribution against z for rotational

-151

-2 I I I I
0.5 15 25 3.5 45

frequency

sincewis a complex constant,we take = ay -+ i {with
wp = —land{ = 1.The physical constants used are

p=174x10°kmm 3, j =0.2 x 107 9n?,

A =94 x10°Nm2 To=29%, t = 0.1s,

to = 4.0 x 10 Nm2 kg = 1 x 10" Nm 2,

Yo =0.779x 10 ° N, o, = 0.05x 103K, f = 0.5,

o, =0.04x 103K K =K*=1.7x 10°Im s 1K1,
Ao=21x10Nm? Cec =1.04x 103Jkg 1K *

A3 =0.7x10°Nm 2 ap=0.779x 10" °N,

&= 1.8, & = 1.7, &3 = 1, 52 0.2.

——— GN-II (Q=0)

— — —GN-II (Q=1) | |

—— GN-Ill (Q=0)
GN-IIl (Q=1)

-1t/

-15 . . . .
0 05 1 15 25

Fig. 4: Microstress distribution against z for rotational freqexen

value of two temperature parameter. In these figures solid
lines and dashed lines for GN-II, dashed with dot and
dotted lines are for GN-Ill at Q 0 and

Q = 1respectively, it is more precisely explained in each
figure. Fig. 1 explains the amplitude of temperature
distribution against a vertical component of distance. In
this figure we have considered the effect of rotational
frequency onT.It is observed that rotational frequency
increases the amplitudeTior GN-II, but for GN-III the
effect of rotation is negligible in the present selected

The change in amplitudes of field variables against aparameters. Both the curves converge to zero for
vertical component of distance in the context of Greensufficient large values of vertical distance. Fig. 2 depicts
and Naghdi theory of both types Il and Il for generalized the stress distribution functions against vertical disean
thermo-micro-stretch medium is represented graphicallycomponents. In both the components of strggsnd o
Figs. 1-4 show the variation in field variables by the rotation is having an increasing effect on both the theories
angular frequency in these figures we have adjustedf GN. Maximum amplitude faryis obtained for with

reference temperature by fixig at 00126, while Figs.

energy dissipation and in the presence of rotational

5-8 represent the variation in field variables for different frequency but foro, maximum amplitude of the stress
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15 T T T T T T T T 250

— O~
1 it S ] wol N
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o5t 17~ Se 1 ! ]
Haaina W o "
11 00t ! Q
o5l ! I \
1 I
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I N e
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i " SRl Ol
asf e e e o
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-2 : : . : : . : ; -50
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4 4
Fig. 5: Temperature distribution against z for different values of 10 — S
B*=0.0126.05,0.1 N =SSR S
|\ -
—10‘;‘\‘\\ - A S
RIS oS
-20 o , //
distribution function is obtained from without energy - N
. . . . . . . . - /
dissipation. Fig. 3 shows the distribution of the horizdnta g d
component of displacement becomes oscillating in the ol !
presence of rotational frequency. It can also be seen that ol i
in the presence of rotational frequency curves of o
displacement distribution function for GN-III are higher T
than the curves for GN-II. All curves converge to zero but o |
the curves without rotation converge to zero faster. In the P
graphs of microstretch distribution function rotational 0 08 1182 28 3 %4 4S

frequency reduces the micro-stress component for GN-II

but in the presence of energy dissipation rotation havesig 6 stresses distribution functions against z for different
increasing effect. Fig. 4 depicts the distribution of \4jyes op* = 0.0126.05,0.1

micro-stress, it can be seen that in the presence of

rotational frequency, curves of micro-stress distribuitio

function for GN-III are higher than the curves for the

GN-II. All curves converge to zero but the curves without zero as the vertical distance from the surface increases
rotation converge to zero faster. Figs. 5-8 are represgntinsatisfying the condition of surface waves. The variation in
the behavior of field variables for different value of field variablesoyy, ox, U,w and A, is represented in Fig.
empirical constant. In these sets of figures we have fixeds,7 and 8.1t can be seen clearly from these figures that
the medium on rotation with angular frequen@y= 1. curve for each variable increases while increasing the
The figures contain the curves with following value of intrinsic material constgdtFor both

presentations components of the normal stresses and displacement
—- is for GN-1IB* = 0.0126; ....... is for GN-IB* = distribution function maximum amplitude of stress
0.05; -.-.-.-.is for GN-IB* = 0.1; + + + is for GN-IlI3* = distribution functions for are obtained under GN-III for
0.0126; * * *is for GN-1ll B* =0.0500 0is for GN-Ill  B* = 0.but for micro-stress distribution function
B*=0.1 maximum amplitude is obtained under GN-II for

Fig. 5 depicts the variations in temperature B*=0.1
distribution function for different values of empiric
material constant. For GN-1l and GN-III amplitude ©f
is directly proportional to that gB*i.e., by increasing the 7 Conclusion
intensity of 3* amplitude of the temperature distribution
function also increases. It can also be seen that startintn this article the effect of rotational frequency on plane
point of temperatur@ for each value of3* is same for waves in a generalized thermo-microstretch elastic media
both theories of the GN with curves of GN-II while, is studied in addition we have also encountered the
having great amplitude as compared to those of GN-III. Itinfluence of reference temperature on field variables. By
indicates that energy dissipation is having decreasinganalysing the graphical behaviour we have concluded the
effect on temperature distribution. All curves converge tofollowing important pionts
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) surface of medium increases, this satisfies the condition
| for surface wave propagation.
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