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Abstract: The goal of this paper is to describe the singular values of one parameter family of generalized generating function of

Bernoulli’s numbers,fλ (z) = λ z
bz−1 , fλ (0) =

λ
lnb for λ ∈ R\{0}, z ∈ C andb > 0 exceptb = 1. It is found that the functionfλ (z) has

an infinite number of singular values for allb > 0 exceptb = 1. Further, it is shown that all the critical values offλ (z) belongs to the

exterior of the disk centered at origin and having radius| λ
lnb | in the right half plane for 0< b < 1 and in the left half plane forb > 1

respectively.
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1 Introduction

The singular values play a very special role in the
dynamics of functions in the complex plane. The
dynamics of functions, which have finite singular values,
are studied by many researchers [1,4,6,17]. But, in the
presence of infinite number of singular values, it is very
crucial to investigate the dynamical properties of such
functions. These investigations are enormously applicable
for the description of Julia sets and Fatou sets in the
dynamics of functions [2,5,8,9,10,11,12].

In this work, the singular values of one parameter
family of generalized generating function of Bernoulli’s
numbers z

bz−1 are described which is a generalization of
one parameter family of function z

ez−1 [15]. Let us
consider

F = { fλ (z) = λ
z

bz −1
and fλ (0) =

λ
lnb

: λ ∈R\{0},

z ∈ C,b > 0,b 6= 1}

The functionfλ ∈ F is a transcendental meromorphic
function with infinite number of poles; it is neither even
nor odd and not periodic. The functionfλ ∈ F is also
related on baseb to generalized Apostol-Bernoulli’s

generating function
(

z
λ ez−1

)α
etz = ∑∞

k=0 B(α)
k (t;λ ) zk

k! by
choosingα = 1, λ = 1 andt = 0.

The pointz∗ ∈ C is said to be a critical point off (z)
if f ′(z∗) = 0. The valuef (z∗) corresponding to a critical
point z∗ is called a critical value off (z). The pointw ∈

Ĉ = C∪ {∞} is said to be an asymptotic value forf (z),
if there exists a continuous curveγ : [0,∞)→ Ĉ satisfying
limt→∞ γ(t) = ∞ and limt→∞ f (γ(t)) = w. A singular value
of f is defined to be either a critical value or an asymptotic
value of f .

The organization of the present paper is as follows: In
Theorem 2.1, it is found that the functionfλ ∈ F has
infinitely many singular values. It is shown that, in
Theorem 2.2, the functionf ′λ (z) has no roots in (i) the left
half plane for 0< b < 1 (ii) the right half plane forb > 1.
Moreover, it is proved that all the critical values of
fλ ∈ F belongs to the exterior of the open disk in
Theorem 2.3.

It is observed that the singular values of one parameter
families of functions are bounded or inside the open disk
in [13,16], but the singular values are found outside the
open disk in [14]. The singular values of one special class
of functions is found by Eremenko [3]. Some more results
on singular values can be seen in [7,18].
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2 Singular Values of fλ ∈ F

The following theorem shows that the functionfλ ∈F has
infinitely many singular values:

Theorem 2.1. Let fλ ∈ F . Then, the functionfλ (z)
possesses infinitely many singular values.

Proof. For critical points,f ′λ (z) = λ (1−z lnb)bz−1
(bz−1)2

= 0. This

gives
(z lnb−1)bz+1= 0.

The real and imaginary parts of this equation are

y lnb
sin(y lnb)

− bycot(y lnb)− 1
lnb = 0 (1)

x =
1

lnb
− ycot(y lnb) (2)

Fig. 1: Graph of y ln0.3
sin(y ln0.3) −0.3ycot(y ln0.3)− 1

ln0.3

From the Figure1 for b = 0.3 and Figure2 for b = 3, it
is observed that Equation (1) has infinitely many solutions.
Also, Equation (2) has infinitely many values. The rest of
proof is similar as [Theorem 2.3, [16]]. Hence, the function
fλ ∈ F has infinitely many critical values.

The finite asymptotic value offλ (z) is 0 sincefλ (z)→
0 asz → ∞ along (i) negative real axis for 0< b < 1 and
(ii) positive real axis forb > 1.

Thus, it proves that the functionfλ ∈ F possesses
infinitely many singular values.�

Fig. 2: Graphs of y ln3
sin(y ln3) −3ycot(y ln3)− 1

ln3

The left half plane and the right half plane are denoted,
respectively, by

H− = {z ∈ Ĉ : Re(z)< 0}

and
H+ = {z ∈ Ĉ : Re(z)> 0}.

In the following theorem, it is found thatf ′λ (z) has no
zeros in the left half plane for 0< b < 1 and the right half
plane forb > 1:

Theorem 2.2. Let fλ ∈ F . Then, the functionf ′λ (z) has
no roots in (i) the left half planeH− for 0< b < 1 (ii) the
right half planeH+ for b > 1.

Proof. For roots off ′λ (z) = 0, we haveb−z = 1−z lnb. The
real and imaginary parts of this equation are

b−x cos(y lnb) = 1− x lnb

b−x sin(y lnb) = y lnb

The rest proof of this theorem is similar as [Theorem
2.1 (a), [16]] for 0 < b < 1 and [Theorem 2.2 (i), [16]] for
b > 1.�

It is proved, in the following theorem, that the function
fλ ∈ F has all the critical values into the exterior of the
open disk centered at origin and having radius|λ |

lnb :

Theorem 2.3. Let fλ ∈ F . Then, all the critical values of
fλ (z) belongs to the exterior of the open disk centered at
origin and having radius| λ

lnb | in the right half planeH+
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for 0 < b < 1 and in the left half planeH− for b > 1
respectively.

Proof. At first, we show thatfλ (z) maps the right half
planeH+ onto the exterior of the open disk. Suppose that
the line segmentγ is given by γ(t) = tz, t ∈ [0,1]. Let
ζ (z) = bz for an arbitrary fixedz ∈ C. Now

∫

γ
ζ (z)dz =

∫ 1

0
ζ (γ(t))γ ′(t)dt = z

∫ 1

0
btzdt =

1
lnb

(bz −1)

(3)

(a)For 0< b < 1
SinceM1 ≡maxt∈[0,1] |ζ (γ(t))|=maxt∈[0,1] |b

tz|< 1 for
z ∈ H+, then, by Equation (3),

|bz −1|=
∣

∣ lnb
∫

γ
ζ (z)dz

∣

∣ ≤ M1|z|| lnb|< |z|| lnb|
∣

∣

∣

∣

z
bz −1

∣

∣

∣

∣

>

∣

∣

∣

∣

1
lnb

∣

∣

∣

∣

for all z ∈ H+.

It follows that

| fλ (z)| =

∣

∣

∣

∣

λ
z

bz −1

∣

∣

∣

∣

>

∣

∣

∣

∣

λ
lnb

∣

∣

∣

∣

for all z ∈ H+.

It shows thatfλ (z) mapsH+ onto the exterior of the
open disk centered at origin and having radius| λ

lnb |.
By Theorem 2.2 (i), the functionf ′λ (z) has no zeros in
the left half planeH−. It follows that all the critical
points lie in the right half planeH+. Consequently, all
the critical values offλ ∈ F belongs to the exterior of
the open disk centered at origin and having radius| λ

lnb |

in the right half planeH+ for 0< b < 1.
(b)Forb > 1

SinceM2 ≡maxt∈[0,1] |ζ (γ(t))|=maxt∈[0,1] |b
tz|< 1 for

z ∈ H−, then, using Equation (3),

|bz −1|=
∣

∣ lnb
∫

γ
ζ (z)dz

∣

∣ ≤ M2|z| lnb < |z| lnb

∣

∣

∣

∣

z
bz −1

∣

∣

∣

∣

>
1

lnb
for all z ∈ H−.

It gives that

| fλ (z)|=

∣

∣

∣

∣

λ
z

bz −1

∣

∣

∣

∣

>
|λ |
lnb

for all z ∈ H−.

It proves thatfλ (z) mapsH− onto the exterior of the
open disk centered at origin and having radius|λ |

lnb .
Using similar arguments as above, by Theorem 2.2 (ii),
it gives that all the critical values offλ ∈ F belong
to the exterior of the open disk centered at origin and
having radius|λ |lnb in the left half plane forb > 1.�

3 Conclusion

In this paper, the singular values of one parameter family
of generalized generating function of Bernoulli’s numbers
were described. It was found that this family of functions
has an infinite number of singular values. It was also
shown that all the critical values of this family belongs to
the exterior of the open disk in the right half plane for
positive base less than one while, for more than one, lie in
the left half plane.
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