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Abstract: In this paper we will study a low algebraic order four-steptime requiring this specific method to have vanished the
phase-lag and its first and second derivatives. For thisifegpetethod we will give the constant value of the parametarthe right
hand side part of the method. We will investigate the infleeotthe elimination of the phase-lag and its first and secaniyatives

on the efficiency of this method. More specifically we will dgyuthe local truncation error of the new method and we will pane

it with other methods in the literature (comparative locahtation error analysis). We will also investigate theosity (interval of
periodicity) of this method using scalar test equation Viidguency different than the frequency of the scalar tesaigon used for
phase-lag analysis (stability analysis). Finally, the meaduced method will be applied on the resonance problereoSthrodinger
equation in order to examine its efficiency. We will provettttas kind of methods are effective for the approximate gotuof the
Schrodinger equation and related periodic initial-vadu®oundary-value problems.

Keywords: Phase-lag, derivative of the phase-lag, initial value fgnmis, oscillating solution, symmetric, multistep, Sdafiriyer equa-
tion

1. Introduction 2. Phase-lag Analysis For Symmetri@k
Finite Difference Methods

The multistep finite difference methods of the form

k

k
q . p2 _ . .
The study of the approximate solution of special second- i_Z_kC' Gnti =h i_Z_kb' F (i, Gnsi) (2)
order initial-value problems of the form B B
with k steps over the equally spaced interv@ts}rz_k €
[a,b] andh = |11 — x|, i=1-k(1)k—1, whereh is
Wi B oy called stepsize of integration, can be used for the approxi-
q'() = f(x,0), a(x0) = Yo and d(xo) =dp (1) mate solution of the initial value problert)(

Remarkif the method is symmetric them; = ¢; andb_; =

with solution of periodical and/or oscillatory behavior is bi, 1=0(1)k.

presented in the present paper. The mathematical modelRemarkThe Multistep Method2) is associated with the
of the above presented problems consists from systems afperator

ordinary differential equations of second order in which

the first derivativeg’ does not appear explicitly (see for "

k
numerical methods for these probler8k{[45 and refer- _ , Y 2 " ;
ences therein). L(x) i:ZkC' u(x+ih)—h i:ZkaU (x+ih) ®3)
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whereu € C2.

Definition 1.[1] The multistep method2) is called alge-
braic of orderp if the associated linear operatbrvan-

ishes for any linear combination of the linearly indepen-

- 2 1
dent functions 1x, x2, ..., xP™L,

If we apply the symmetric R-step method & —k(1)K),
to the scalar test equation

q' = —¢°q 4)
we have the following difference equation:
A(V) Onk + -+ A1(V) Ong1 + Ao(V) On
FAL(V) On-1+ .. +Ac(V) Onk = 0 )

wherev = @h, his the step length an#lj(v) j = 0(1)k are
polynomials ofv.

The associated witlbf characteristic equation is given
by:

AW AR ALV A+ Ag(V)
+AWVA T L AMWAT*=0 (6)
Definition 2.[16] A symmetri2k-step method with char-
acteristic equation given bye) is said to have an inter-
val of periodicity (0,v3) if, for all v € (0,v3), the roots
Ai, i =1(1)2k of Eq. 6) satisfy:

M =€ =69V and|A| <1,i=3(1)2k (7)
wheref(v) is a real function of v.

Definition 3.[14], [15] For any method corresponding to
the characteristic equatiorb} the phase-lag is defined as
the leading term in the expansion of

t=v—0(v) (8)
Then if the quantity = O(vP*1) as v— oo, the order of
phase-lag is p.

Definition 4.[2] If for a specific method the phase-lag is
equal to zero, then this method is callgldase-fitted

Theorem 1[14] The symmetri@k-step method with char-
acteristic equation given by} has phase-lag order p and
phase-lag constant c given by

—cPF2 o) =
2Ac(v) cogkv) + ...+ 2Aj(v) cogjV) + ... + Ag(V)
2KAV) + ...+ 2[2A( (V) + ... + 2A4(V)

9)

RemarkWe can use the above mentioned formula for a di-
rect computation of the the phase-lag of any symmetric

2k-step method.

Remarkn our case, the symmetric four-step method has

phase-lag ordep and phase-lag constangiven by:
—cVWPT2 L O(vPTY) = To

T1

To = 2A2(v) cog2V) + 2A1(v) cogV) + Ag(V)
1= 8A2(V) + 2A1(V)

(10)

3. A New Low Algebraic Order Explicit
Method with Vanished Phase-Lag and Its
First and Second Derivatives

Let us consider the method

On+2+C1 (On41+0n-1) +CoOn+0n—2 =

=h2|by (foe1+ foo1) +bo (11)
wherefi =q” (x,q),i = —2(1)2.
3.1. Development of the Method
Considering 11), we choose:
oy = o (12)

We now define the phase-lag and its first and second
derivatives:

Ty B
8+2a;+ %32 B
T3
8+2a1%‘;2

Phase- Lag(PL) =

FirstDerivative of PL=

53v
o (

T4

2:
53v2
8+2a+ %)

Ts
8+2ay+ 3%
Te

(8+2a1+ %Vf)z
T7

(8+2a0+ %)’

_58 T

10 (8220 + %{2)2

Second Derivative of Pk

_s3v
5

28092
50

=0

(13)

where
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T, =2 cos(Zv) +2 (a1
+%) os(v) +V2bo + ag
53vcos(v)

—5

-2 (a1+ %(\)/2) sin(v) +2vhy
Ty=2 cos<2v) +2 (al
+£) os(v) +V2bo + ag

40
Ts = —8 cos<2v) + w

T = -4 sin(ZV) +

To = —53v3cos(2v) + 40v2sin(3v) + 159 sin(2v) v2
—120 sin(v) V2 4 159v® + 120vcos(3v) + 120vcos(v)
—40 sin(3v) — 120 sin(v)

Tio = —53 cogVv) v — 160 cog2v)v

—159 sin(v) V2 4- 80 sin(2v)

T11 = 53 cog2v)v—40sin(3v)

+53 sin(2v) 4 120 sin(v) — 159v

If the above formulae given byt ) are subject to heavy
cancellations for some values|of then the following Tay-
lor series expansions should be used :

9 483 n 713/
5 100 875

53V3in(v) +58157\/5 38340257
_f -2 (al 1260000 1940400000
53 N 5833614110 312921255897
+=5) cos(v) +2by 38808000000 476756280000000
575150010618 737733960450868°
4 sm( ) L \J 53VCOS< ) * 324194270400000000 18971848703808000000000
n 3600650218056188 6
788061407696640000000000
(al+ ) sin(v) +2viy 1 4832 713/
T, = 2cof2v) +2(a %= 716" 200 " 1750
£32 +412v6 3464978
+4—0) os(v) 2o + a9 39375 121275000
166910 1190202412
Tg =2 COS(ZV) +2 (al 1212750000 59594535000000
53y 904494674 4078605979416
+ﬁ) °5<V) +Vv?bo + 2 ~10131070950000000 91210811076000000000
7083046376828
Requesting the above methatll) with coefficientby 320149946876760020000060
given by (12) to have the phase-lag and its first and second by = 5, 483 17043/
derivatives vanished, the system of equatidr® (nust be 4 200 28000
satisfied. 7493% 88250778
The coefficients of the new proposed method are ob- + 120000 2587200000
tained solving the above system of equations: 9523639/10 383720783812
+77616000000_ 1271350080000000
1278051955914 205540606845{1°
ag = To i + 216129513600000000 2810644252416000000000
40VCOS(V) —40 Sln(V) 9819848889051\718
a; = T10 i +68298655333708800000000 (;15)
40vcos(v) — 40 sin(v)
b Ti1 " ~ The behavior of the coefficients is given in the follow-
9 ™ 20vcos(v) — 40 sin(v) (14) " ing Figure 1. .
The local truncation error of the new produced method
(1) (mentioned a€ExplFourStep with the coefficients
where given by (L4) - (15) is given by:

(@© 2015 NSP
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Figure 1: Behavior of the coefficients of the new proposed
method given by4) for several values of = @h.

161h®
LT EexplFourstep™ 57~ 2400 <Qn +3(P q

+3¢*q? + ¢° Qn> +0(h8)

(16)

4. Comparative Error Analysis

The methods mentioned below are investigated :

4.1. Classical Method(i.e. the methddL) with
constant coefficients of the Case I)

161h5 g

LTEoL = 55 M +0(h®) (17)

4.2. The Method with Vanished Phase-Lag
Produced in [1]

161h®
LT EMethAnasSim— 2400 < + (PZQH ) +0 (hg) (18)

4.3. The New Proposed Method with Vanished
Phase-Lag and its First Derivative Produced in

[44]

161h6
LT Erourstep= 2400 <Qr(16) +2 QDZ QE14>

+qo4q512)> +0(h®) (19)

4.4. The New Proposed Method with Vanished
Phase-Lag and its First and Second Derivatives
Produced in Section 3

161h®
LT EexplFourstep™ —57~n 2400 <Qn +3(P q

+3¢*q? + ¢ Qn> +0(h8) (20)

The procedure contains the following stages

—Computation of the derivatives which are appeared in
the formulae of the Local Truncation Errors. We present
some formulae of these derivatives in Appendix

—Using the formulae of the derivatives produced in the
previous stage, we substitute them in the expressions
of the Local Truncation Error. The resulting formulae
of the local truncation errors are dependent from the

energykE.
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—Our study is based on the investigation of two special4.7. The New Proposed Method with Vanished
cases in terms of the value Bf(which is appeared in  Phase-Lag and its First Derivative Produced in
the Local Truncation Error formulae produced in the [44]
above second stage of the algorithm of local truncation
error analysis) :

1.The Energy and the potential are closed each other,
i.e.,G=V,—E ~ 0. Consequently, all the termsin
the local truncation error formulae with terms of 6| ( 161 2
several power o6 are equal approximately equal LT Erourstepn = [(2400 (gx)7ax)
to zero. Therefore, we consider only the terms of

the polynomials with power t& equal to zero i.e. +ﬂ (Eg(x)> Eq(x) + 161

the free fromG terms of the polynomials of local 1200\ dx dx 480

truncation error. In this case (free fro@ terms) d2

the free terms of the polynomials @are the same (Fg(x)) q(x)) G+---|+0 (h8) (23)
for the cases of the classical method (constant co- X

efficients) and of the methods with vanished the
phase-lag and its derivatives. Consequently, for these
values ofG, the methods are of comparable accu- 4.8. The New Proposed Method with Vanished

racy. . . . .
2G >y> 00rG << 0. Then|G| is a large number. Phase-Lag and its First and Second Derivatives

—Finally we compute the asymptotic expansions of theprOCIuceCI In Section 3

Local Truncation Errors

The following asymptotic expansions of the Local Trun- 161h8 d2
cation Errors are obtained based on the analysis presented EexpiFourstep= 600 (Wg(x)> q(x) G
above :
+--->+O(h8) (24)
4.5. Classical Method From the above equations we have the following theo-
rem:

Theorem 2. -Classical Low Algebraic Order Four-Step
Explicit Method: For this method the error increases
161 as the third power of G.
LT EcL =h® (W)q (X) G®+- ) +0(h%) (1) —Low Algebraic Order Four-Step Explicit Phase-Fitted
Method developed inl]: For this method the error
increases as the second power of G.
—Low Algebraic Order Four-Step Explicit Method with
Vanished Phase-lag and its First Derivative developed
4.6. The Method with Vanished Phase-Lag gowg]r:;o(rsthis method the error increases as the first
Produced in [1] —Low Algebraic Order Four-Step Explicit Method with
Vanished Phase-lag and its First and Second Deriva-
tives developed in Section 3: For this method the error
increases as the first power of G but with coefficient
lower than the coefficient of the first power of G of the
method developed irif].

161 So, for the approximate integration of the time inde-
LT Emethanassin= h® | ———g(x) pendent radial Sctidinger equation the New Obtained
(2400 Low Algebraic Order Method with Vanished Phase-Lag
and its First and Second Derivatives is the most efficient
y(x) G2+ - ) +O(h8) (22)  from theoretical point of view, especially for large values
of |G| = V. — E|.
(@© 2015 NSP

Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

2910 %N S\ T. E. Simos : On the Low Algebraic Order Explicit Methods with

5. Stability Analysis Definition 6.Singularly almost P-stable is called the method
with interval of periodicity equal t¢0, «) — S*. The term
In this section we will study the stability of the new devel- Singularly aimost P-stable method i used only in the cases

oped method. For this reason we apply the new obtained/hen the frequency of the scalar test equation for the phase-
method to the scalar test equation: lag analysis is equal with the frequency of the scalar test

equation for the stability analysis, i.ex = @.

" 2
q=-wq (25) Thes— v plane for the method obtained in this paper

wherew # @ and whereg is the frequency in the scalar S Shown in Figure 2.
test equation4) where was based the phase-lag analysis
investigated above.
The above application to the scalar test equatiB) (
leads to the following difference equation:

Sty ey St et el s e Ligand s S et

A2 (S,V) (Ons2+0n-2) +A1(S,V) (Ons1+0n-1)
+Ao(S,V) gn =0 (26)

where

B B T2
A2(sV) =1, Au(sv) = 40 vecos(v) —sin(v)
1 Ti3

Ao (s,V) (27)

~ 20 vcos(V) —sin(V)

where L

Ti» = —53 cogV) v+ 53 cogv) v
+320v(cos(v))?+ 53 sin(v) s

+159 sin(v) v — 160 sin(v) cos(v) — 160v
Ti3 = —80(cos(v))? sin(v) &

+80 (cos(v))2 sin(v) V2 Figure 2: s—v plane of the new produced method with vanished

2 5 phase-lag and its first and second derivatives
+53(cos(v))?s?v — 53(cos(v))“v?

+240v(cos(V))* + 53 sin(v) cos(v) &

+159 sin(v) cos(v) v?
—80 sin(v) (cos(v))? Remarkin order one to read the tree- v region, the fol-
lowing must be taken into account:
+80 sin(v) s? — 80 sin(v) V2 — 106V + 106> e ehadowed aread ettt - "
; —The shadowed area denotes where the method is stable,
120vcosv) — 40 sin(v) —The white area denotes the region where the method is
ands= wh. unstable.

RemarkThere are problems for which their mathematical
models require the observationtb& surroundings of the
first diagonal of the s— v plane. These are the cases of the
mathematical models where the frequency of the scalar test
equation used for the phase-lag analysis is equal with the
. . . frequency of the scalar test equation used for the stability
the?cﬁi)evsir?g(;gﬁnai‘tri]gms'ls presented in Section 2, we hangalysis. In thi; category belong many problgms in sci-

' ences and engineering (for example the time independent
gchrbdinger equation).

RemarkThe frequency of the scalar test equatigs)( cw,
which is used for the stability analysis is not equal with the
frequency of the scalar test equatidi), (¢, which is used
for the phase-lag analysis, i®.# @.

Definition 5.(see [L6]) P-stable methods is called the metho
with interval of periodicity equal t¢0, ). 1 whereSis a set of distinct points

(@© 2015 NSP
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Based on the above remark, we investigate the casef the radial Schrodinger equation, the parametefor
where the frequency of the scalar test equation used fol = 0) is given by :
the phase-lag analysis is equal with the frequency of the
scalar test equation used for the stability analysis, ie. w — ./ K2 = ./ _
study the case where= v (i.e. see the surroundings of the qo V) ] “l . V(r)~El (30)
first diagonal of thes— v plane). Based on this investiga- WhereV (r) is the potential an& is the energy.
tion we extract the results that the interval of periodicity
the new developed method is equal {0,256).

The above study leads to the following theorem: 6.1. Woods-Saxon potential

, , ) _ The well known Woods-Saxon potential is use for our nu-
Theorem 3The method obtained in section 3: merical experiments. The model of the Woods-Saxon po-

—is of fourth algebraic order, tential is given by :

—has the phase-lag and its first and second derivatives (r) = U Uoq 31)
equal to zero 1+9 a(1+0q)?

—has an interval of periodicity equals t¢0,256) when
the frequency of the scalar test equation used for thewith q = exp[r_axo} , Up = —50, a= 0.6, andXo = 7.0.
phase-lag analysis is equal with the frequency of the  The behavior of Woods-Saxon potential is shown in
scalar test equation used for the stability analysis Figure 5.

6 . N U m e rl Cal reS U |tS The Woods-Saxon Potential

In this section we will study the effectiveness of the new : 10 N
developed low algebraic order explicit four-step method.

The study will take place via the numerical solution of the “109
one-dimensional time-independent Schrodinger equation
The radial time independent Schrddinger equation has 201

a mathematics model of the form :

q'(n)=00+1)/r?+V(r)-Kiar).  (28) ™

This is a boundary value problem which has the following
boundary conditions :

-40

y(0)=0 (29) o

and another boundary condition, for large values, afe- Figure 3: The Woods-Saxon potential.
termined by physical properties and characteristics of the
specific problem.

The mathematical model of the radial time indepen-  gome critical points on the description of the potential
dent Schrodinger equatio2§) consists from functions, .5 pe defined for some potentials, such as the Woods-
quantities and parameters. Here we give the definitions 05550 potential. These critical points then are used in or-
these functions, quantities and parameters : der to determine the value of the parametdsee for de-

. . tails [45]).
1.The functionW(r) = I(I +1)/r?+V(r) is calledthe . .
effective potentialThis satisfie®V(x) — 0 asx — oo, Using the methodology presented #€] and [47] and

2.The quantity? is a real number denotirthe energy for the purpose of our tests, we choagas follows :

3.The quantity is a given integer representing taegu- v/—50+E, forre]0,6.5—2h],
lar momentum v—375+E, forr=6.5-h
4V is a given function which denotes tpetential @=<{ V—25+E, forr=65 (32)

N v—125+E, forr =6.5+h
The method proposed in this paper belongs to the cate- VE. forr € 6.5+ 2h, 15]

gory of the frequency dependent methods. Therefore in or-
der to apply these methods to any problem, the frequency For example, in the point of the integration regios
must be determined , i.e. we have to define the paranpeter 6.5 — h, the value ofp is equal to:/—37.5+ E. So,w =
(see for example the notation aftd) &nd the formulaein  ¢h=+/—37.5+ Eh. In the point of the integration region
section 3) must be defined. For the category of problems = 6.5— 3h, the value ofp is equal to:,/—50+ E, etc.

(@© 2015 NSP
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6.2. Radial Schisdinger Equation - The
Resonance Problem

In this section the effectiveness of the new obtained method
is investigated using the numerical solution of the radial
time independent Schrodinger equatiag)(with the Woods-
Saxon potential31). Initially it is necessary to approx-
imate the true interval of integration, which is equal to

re (O,oo), by a finite one. For our numerical purposes we

consider the integration intervak [0, 15]. We will solve
the above mentioned problem described by equa@& (
in a rather large domain of energies, ife.€ [1,1000.

The Schrodinger equation effectively reduces to

@'+ (-5 ) am =0

for r greater than some valurRfor the case of positive en-
ergies E = k2. This is because the potential decays faster

than the terrﬁ%.

In the above mathematical model, the differential equa-
tion has linearly independent solutiokg; (kr) andkrn; (kr),
wherej; (kr) andn (kr) are the spherical Bessel and Neu-
mann functions respectively. Thus, the solution of equa-
tion (28) (whenr — ), has the asymptotic form

q(r) = Akrj; (kr) — Bkrny (kr)

~ AC [Sin (kr — %) + tand, cos(kr — I—;T)]

whereg is the phase shift that may be calculated from the
formula

(33)

(34)

y(r2)S(ry) —y(r1)S(rz)

N = ) Clr) y(r)C(r2)

(35)

—The eighth order multi-step method developed by Quin-
lan and TremaineS0], which is indicated ad/ethod
QTs8.

—The tenth order multi-step method developed by Quin-
lan and TremaineS50], which is indicated ad/ethod
QT10.

—The twelfth order multi-step method developed by Quin-
lan and TremaineS50], which is indicated ad/ethod
QT12.

—The fourth algebraic order method of Chawla and Rao
with minimal phase-lagd2], which is indicated aMethod
MCR4

—The exponentially-fitted method of Raptis and Allison
[51], which is indicated aMethod MRA

—The hybrid sixth algebraic order method developed by
Chawla and Rao with minimal phase-lgs], which
is indicated asMethod MCR6

—The classical form of the fourth algebraic order four-
step method developed in Section 3, which is indicated
asMethod NMCL 2.

—The Phase-Fitted Method (Case 1) developedljn |
which is indicated aMethod NMPF1

—The Phase-Fitted Method (Case 2) developedljn [
which is indicated aMethod NMPF2

—The Method developed irtf] (Case 2), which is indi-
cated agvlethod NMC2

—The Method developed irtf] (Case 1), which is indi-
cated agvlethod NMC1

—-The New Obtained Method developed in Section 3,
which is indicated aMethod NMPLD2V

Table 1: Characteristics of the Methods of the same algebraic
order compared in our numerical experiments. PL: Phase-Lag

for r1 andr, distinct points in the asymptotic region (we DPL: First Derivative of the Phase-Lag, DDPL: Second Deriva

choose; as the right hand end point of the interval of inte-

tive of the Phase-Lag

gration andrp = r; — h) with S(r) = krj; (kr) andC(r) =

—krny (kr). Since the problem is treated as an initial-value
problem, we neegd;, j = 0,(1)3 before starting a four-
step method. From the initial condition, we obtggn The
valuesy;, i = 1(1)3 are obtained by using high order Runge-
Kutta-Nystrom methods(se4§] and [49]). With these start-

Method Algebraic Order PL DPL DDPL
NMPF1 4 0 —goy\V® —%v“
NMPF2 4 0 —$5h LIV
NMC1 4 0 0 — ol
NMC2 4 0 0 —%50
NMPLD2V 4 0 0 0

ing values, we evaluate at of the asymptotic region the
phase shifty.

The known as resonance problem is hold for the case We defined some reference values using the well known
of positive energies. This problem consists either of two-step method of Chawla and R&&g[ with small step
size for the integration. We then compared the numerically
calculated eigenenergies with these reference values. In
Figures 4 and 5, we present the maximum absolute error
Errmax= |logio(Err)| where

—finding the phase-shify or
—finding thoseE, for E € [1,1000, at whichg = 7.

We actually solve the latter problem, knowrths res-
onance problem

The boundary conditions for this problem are: Err = |Ecalculated— Eaccuratd (37)

of the eigenenergids, = 341495874 andt; = 989701916

q(0)=0, q(r) = COS(\/Er) forlarger.  (36)  respectively, for several values of CPU time (in seconds).

We compute the approximate positive eigenenergies of 2 with the term classical we mean the method of Section 3 with
the Woods-Saxon resonance problem using: constant coefficients

(@© 2015 NSP
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Err__ for the resonance 341.495874
‘max

B Vethod QT8
©®—®—® Vethod QT10
El | Ae—t—dh Method QT12

rA
E—E—H Method MCR6
©®—8—0 Method NMCL
B Method NMPF1
@88 Method NMPF2
PP Method NMC2
W—F—¥ Method NMC1
#—4— Method NMPLD2V

0 01 03 04

02 &
CPU time (in seconds)

Figure 4: Accuracy (Digits) for several values 6FPU Time (in
Seconds) for the eigenvall® = 341495874. The nonexistence
of a value of Accuracy (Digits) indicates that for this valok
CPU, Accuracy (Digits) is less than 0

Err,,, for the resonance 589.701916
Bl Method QT8
@88 Method QT10
A== Method QT12
VT Viethod MCRA
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Figure 5: Accuracy (Digits) for several values 6PU Time (in
Seconds) for the eigenvalli = 989.701916. The nonexistence
of a value of Accuracy (Digits) indicates that for this valol
CPU, Accuracy (Digits) is less than 0

We note that the CPU time (in seconds) counts the compu-

tational cost for each method.

7. Conclusions

In this paper, we studied a family of low algebraic order
explicit four-step methods. The main subjects of this study

was:

—the investigation of the vanishing of the phase-lag and

its first and second derivatives

—-the comparative error analysis

—the stability analysis.

—the computational behavior of the new produced method
and its effectiveness on the numerical solution of the
radial Schrodinger equation and related problems.

From the numerical experiments mentioned above, we

have the following :

1.The classical form of the tenth algebraic order four-
step multiderivative method developed in Section 3,
which is indicated aMethod NMCL is more efficient
than the fourth algebraic order method of Chawla and
Rao with minimal phase-lagp], which is indicated as
Method MCR4. Both the above mentioned methods
are more efficient than the exponentially-fitted method
of Raptis and Allison$1], which is indicated aMethod
MRA.

2.The tenth algebraic order multistep method developed
by Quinlan and Tremainesp)], which is indicated as
Method QT10 is more efficient than the fourth alge-
braic order method of Chawla and Rao with minimal
phase-lag$2], which is indicated a¢lethod MCRA4.
TheMethod QT10is also more efficient than the eighth

order multi-step method developed by Quinlan and Tremaine

[50], which is indicated aslethod QT8. Finally, the
Method QT10 is more efficient than the hybrid sixth
algebraic order method developed by Chawla and Rao
with minimal phase-lagd3], which is indicated aMethod
MCRG6 for large CPU time and less efficient than the
Method MCR®6 for small CPU time.

3.The twelfth algebraic order multistep method devel-
oped by Quinlan and Tremaing(], which is indicated
asMethod QT12is more efficient than the tenth order
multistep method developed by Quinlan and Tremaine
[50], which is indicated aMethod QT10

4.The Phase-Fitted Method (Case 1) developedijn [
which is indicated asMethod NMPF1 is more effi-
cient than the classical form of the fourth algebraic or-
der four-step method developed in Section 3, which is
indicated asMethod NMCL , the exponentially-fitted
method of Raptis and Allisorbfl] and the Phase-Fitted
Method (Case 2) developed i][ which is indicated
asMethod NMPF2

5.The Method developed irH§] (Case 2), which is in-
dicated asMethod NMC2 is more efficient than the
classical form of the fourth algebraic order four-step
method developed in Section 3, which is indicated as
Method NMCL , the exponentially-fitted method of Rap-
tis and Allison p1] and the Phase-Fitted Method (Case
2) developedini], whichis indicated aMethod NMPF2
and the Phase-Fitted Method (Case 1) developel],in [
which is indicated aMethod NMPF1

6.The Method developed idf] (Case 1), which is indi-
cated asvlethod NMC1, is the more efficient than all
the other methods mentioned above.

7.The New Obtained Method developed in Section 3,
which is indicated aMethod NMPLD2V , is the most
efficient one.
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All computations were carried out on a IBM PC-AT
compatible 80486 using double precision arithmetic with
16 significant digits accuracy (IEEE standard).

Appendix: Formulae of the derivatives ofqy

Formulae of the derivatives which presented in the formu-
lae of the Local Truncation Errors:
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