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Abstract: In this paper we will study a low algebraic order four-step method requiring this specific method to have vanished the
phase-lag and its first and second derivatives. For this specific method we will give the constant value of the parameters in the right
hand side part of the method. We will investigate the influence of the elimination of the phase-lag and its first and second derivatives
on the efficiency of this method. More specifically we will study the local truncation error of the new method and we will compare
it with other methods in the literature (comparative local truncation error analysis). We will also investigate the stability (interval of
periodicity) of this method using scalar test equation withfrequency different than the frequency of the scalar test equation used for
phase-lag analysis (stability analysis). Finally, the newproduced method will be applied on the resonance problem of the Schrödinger
equation in order to examine its efficiency. We will prove that this kind of methods are effective for the approximate solution of the
Schrödinger equation and related periodic initial-valueor boundary-value problems.

Keywords: Phase-lag, derivative of the phase-lag, initial value problems, oscillating solution, symmetric, multistep, Schrödinger equa-
tion

1. Introduction

The study of the approximate solution of special second-
order initial-value problems of the form

q′′(x) = f (x,q), q(x0) = y0 and q′(x0) = q′0 (1)

with solution of periodical and/or oscillatory behavior is
presented in the present paper. The mathematical models
of the above presented problems consists from systems of
ordinary differential equations of second order in which
the first derivativeq′ does not appear explicitly (see for
numerical methods for these problems [3] - [45] and refer-
ences therein).

2. Phase-lag Analysis For Symmetric2k
Finite Difference Methods

The multistep finite difference methods of the form

k

∑
i=−k

ci qn+i = h2
k

∑
i=−k

bi f (xn+i ,qn+i) (2)

with k steps over the equally spaced intervals{xi}k
i=−k ∈

[a,b] and h = |xi+1 − xi |, i = 1− k(1)k− 1, whereh is
called stepsize of integration, can be used for the approxi-
mate solution of the initial value problem (1).

Remark.If the method is symmetric thenc−i = ci andb−i =
bi , i = 0(1)k.

Remark.The Multistep Method (2) is associated with the
operator

L(x) =
k

∑
i=−k

ci u(x+ ih)−h2
k

∑
i=−k

bi u
′′(x+ ih) (3)
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whereu∈C2.

Definition 1.[1] The multistep method (2) is called alge-
braic of orderp if the associated linear operatorL van-
ishes for any linear combination of the linearly indepen-
dent functions 1, x, x2, . . . , xp+1.

If we apply the symmetric 2k-step method, (i =−k(1)k),
to the scalar test equation

q′′ =−φ2q (4)

we have the following difference equation:

Ak(v)qn+k+ ...+A1(v)qn+1+A0(v)qn

+A1(v)qn−1+ ...+Ak(v)qn−k = 0 (5)

wherev= φ h, h is the step length andA j(v) j = 0(1)k are
polynomials ofv.

The associated with (5) characteristic equation is given
by:

Ak(v)λ k+ ...+A1(v)λ +A0(v)

+A1(v)λ−1+ ...+Ak(v)λ−k = 0 (6)

Definition 2.[16] A symmetric2k-step method with char-
acteristic equation given by (6) is said to have an inter-
val of periodicity(0,v2

0) if, for all v ∈ (0,v2
0), the roots

λi , i = 1(1)2k of Eq. (6) satisfy:

λ1 = eiθ(v), λ2 = e−iθ(v), and |λi | ≤ 1, i = 3(1)2k (7)

whereθ (v) is a real function of v.

Definition 3.[14], [15] For any method corresponding to
the characteristic equation (6) the phase-lag is defined as
the leading term in the expansion of

t = v−θ (v) (8)

Then if the quantity t= O(vp+1) as v→ ∞, the order of
phase-lag is p.

Definition 4.[2] If for a specific method the phase-lag is
equal to zero, then this method is calledphase-fitted

Theorem 1.[14] The symmetric2k-step method with char-
acteristic equation given by (6) has phase-lag order p and
phase-lag constant c given by

−cvp+2+O(vp+4) = (9)

2Ak(v) cos(kv)+ ...+2A j(v) cos( j v)+ ...+A0(v)
2k2Ak(v)+ ...+2 j2A j(v)+ ...+2A1(v)

Remark.We can use the above mentioned formula for a di-
rect computation of the the phase-lag of any symmetric
2k-step method.

Remark.In our case, the symmetric four-step method has
phase-lag orderp and phase-lag constantc given by:

−cvp+2+O(vp+4) =
T0

T1
(10)

T0 = 2A2(v) cos(2v)+2A1(v) cos(v)+A0(v)

T1 = 8A2(v)+2A1(v)

3. A New Low Algebraic Order Explicit
Method with Vanished Phase-Lag and Its
First and Second Derivatives

Let us consider the method

qn+2+ c1 (qn+1+qn−1)+ c0qn+qn−2 =

= h2

[

b1 ( fn+1+ fn−1)+b0 fn

]

(11)

where fi = q′′ (xi ,qi) , i =−2(1)2.

3.1. Development of the Method

Considering (11), we choose:

b1 =
53
40

(12)

We now define the phase-lag and its first and second
derivatives:

Phase−Lag(PL) =
T2

8+2a1+
53v2

20

= 0

FirstDerivativeofPL=
T3

8+2a1
53v2

20

−53v
10

T4
(

8+2a1+
53v2

20

)2 = 0

SecondDerivativeofPL=
T5

8+2a1+
53v2

20

−53v
5

T6
(

8+2a1+
53v2

20

)2

+
2809v2

50
T7

(

8+2a1+
53v2

20

)3

−53
10

T8
(

8+2a1+
53v2

20

)2 = 0 (13)

where
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T2 = 2 cos
(

2v
)

+2
(

a1

+
53v2

40

)

cos
(

v
)

+ v2b0+a0

T3 = −4 sin
(

2v
)

+
53vcos

(

v
)

10

−2
(

a1+
53v2

40

)

sin
(

v
)

+2vb0

T4 = 2 cos
(

2v
)

+2
(

a1

+
53v2

40

)

cos
(

v
)

+ v2b0+a0

T5 = −8 cos
(

2v
)

+
53 cos

(

v
)

10

−
53vsin

(

v
)

5
−2
(

a1

+
53v2

40

)

cos
(

v
)

+2b0

T6 = −4 sin
(

2v
)

+
53vcos

(

v
)

10

−2
(

a1+
53v2

40

)

sin
(

v
)

+2vb0

T7 = 2 cos
(

2v
)

+2
(

a1

+
53v2

40

)

cos
(

v
)

+ v2b0+a0

T8 = 2 cos
(

2v
)

+2
(

a1

+
53v2

40

)

cos
(

v
)

+ v2b0+a0

Requesting the above method (11) with coefficientb1
given by (12) to have the phase-lag and its first and second
derivatives vanished, the system of equations (13) must be
satisfied.

The coefficients of the new proposed method are ob-
tained solving the above system of equations:

a0 =
T9

40vcos(v)−40 sin(v)

a1 =
T10

40vcos(v)−40 sin(v)

b0 =
T11

40vcos(v)−40 sin(v)
(14)

where

T9 = −53v3cos(2v)+40v2sin(3v)+159 sin(2v)v2

−120 sin(v)v2+159v3+120vcos(3v)+120vcos(v)

−40 sin(3v)−120 sin(v)

T10 = −53 cos(v)v3−160 cos(2v)v

−159 sin(v)v2+80 sin(2v)

T11 = 53 cos(2v)v−40 sin(3v)

+53 sin(2v)+120 sin(v)−159v

If the above formulae given by (14) are subject to heavy
cancellations for some values of|v| then the following Tay-
lor series expansions should be used :

a0 = −9
5
− 483v2

100
+

713v4

875

+
58157v6

1260000
− 38340257v8

1940400000

+
58336141v10

38808000000
− 31292125589v12

476756280000000

+
575150010613v14

324194270400000000
− 737733960450869v16

18971848703808000000000

+
360065021805613v18

788061407696640000000000
+ . . .

a1 = − 1
10

+
483v2

200
− 713v4

1750

+
412v6

39375
− 34649v8

121275000

− 1669v10

1212750000
− 11902021v12

59594535000000

− 90449467v14

10131070950000000
− 40786059791v16

91210811076000000000

− 7083046376821v18

320149946876760000000000
+ . . .

b0 =
5
4
+

483v2

200
− 17043v4

28000

+
7493v6

120000
− 8825077v8

2587200000

+
9523639v10

77616000000
− 3837207833v12

1271350080000000

+
12780519559v14

216129513600000000
− 2055406068451v16

2810644252416000000000

+
98198488890517v18

6829865533370880000000000
+ . . .(15)

The behavior of the coefficients is given in the follow-
ing Figure 1.

The local truncation error of the new produced method
(11) (mentioned asExplFourStep) with the coefficients
given by (14) - (15) is given by:
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Figure 1: Behavior of the coefficients of the new proposed
method given by (14) for several values ofv= φ h.

LTEExplFourStep=
161h6

2400

(

q(6)n +3φ2q(4)n

+3φ4q(2)n +φ6qn

)

+O
(

h8) (16)

4. Comparative Error Analysis

The methods mentioned below are investigated :

4.1. Classical Method(i.e. the method (11) with
constant coefficients of the Case I)

LTECL =
161h6

2400
q(6)n +O

(

h8) (17)

4.2. The Method with Vanished Phase-Lag
Produced in [1]

LTEMethAnasSim=
161h6

2400

(

q(6)n +φ2q(4)n

)

+O
(

h8) (18)

4.3. The New Proposed Method with Vanished
Phase-Lag and its First Derivative Produced in
[44]

LTEFourStep=
161h6

2400

(

q(6)n +2φ2q(4)n

+φ4q(2)n

)

+O
(

h8) (19)

4.4. The New Proposed Method with Vanished
Phase-Lag and its First and Second Derivatives
Produced in Section 3

LTEExplFourStep=
161h6

2400

(

q(6)n +3φ2q(4)n

+3φ4q(2)n +φ6qn

)

+O
(

h8) (20)

The procedure contains the following stages

–Computation of the derivatives which are appeared in
the formulae of the Local Truncation Errors. We present
some formulae of these derivatives in Appendix

–Using the formulae of the derivatives produced in the
previous stage, we substitute them in the expressions
of the Local Truncation Error. The resulting formulae
of the local truncation errors are dependent from the
energyE.
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–Our study is based on the investigation of two special
cases in terms of the value ofE (which is appeared in
the Local Truncation Error formulae produced in the
above second stage of the algorithm of local truncation
error analysis) :

1.The Energy and the potential are closed each other,
i.e.,G=Vc−E ≈ 0. Consequently, all the terms in
the local truncation error formulae with terms of
several power ofG are equal approximately equal
to zero. Therefore, we consider only the terms of
the polynomials with power toG equal to zero i.e.
the free fromG terms of the polynomials of local
truncation error. In this case (free fromG terms)
the free terms of the polynomials inG are the same
for the cases of the classical method (constant co-
efficients) and of the methods with vanished the
phase-lag and its derivatives. Consequently, for these
values ofG, the methods are of comparable accu-
racy.

2.G>> 0 orG<< 0. Then|G| is a large number.

–Finally we compute the asymptotic expansions of the
Local Truncation Errors

The following asymptotic expansions of the Local Trun-
cation Errors are obtained based on the analysis presented
above :

4.5. Classical Method

LTECL = h6

(

161
2400

q(x) G3+ · · ·
)

+O
(

h8) (21)

4.6. The Method with Vanished Phase-Lag
Produced in [1]

LTEMethAnasSim= h6

(

161
2400

g(x)

y(x) G2+ · · ·
)

+O
(

h8) (22)

4.7. The New Proposed Method with Vanished
Phase-Lag and its First Derivative Produced in
[44]

LTEFourStepII= h6

[(

161
2400

(g(x))2 q(x)

+
161
1200

(

d
dx

g(x)

)

d
dx

q(x)+
161
480

(

d2

dx2 g(x)

)

q(x)

)

G+ · · ·
]

+O
(

h8) (23)

4.8. The New Proposed Method with Vanished
Phase-Lag and its First and Second Derivatives
Produced in Section 3

LTEExplFourStep=
161h6

600

(

(

d2

dx2 g(x)

)

q(x) G

+ · · ·
)

+O
(

h8) (24)

From the above equations we have the following theo-
rem:

Theorem 2. –Classical Low Algebraic Order Four-Step
Explicit Method: For this method the error increases
as the third power of G.

–Low Algebraic Order Four-Step Explicit Phase-Fitted
Method developed in [1]: For this method the error
increases as the second power of G.

–Low Algebraic Order Four-Step Explicit Method with
Vanished Phase-lag and its First Derivative developed
in [44]: For this method the error increases as the first
power of G.

–Low Algebraic Order Four-Step Explicit Method with
Vanished Phase-lag and its First and Second Deriva-
tives developed in Section 3: For this method the error
increases as the first power of G but with coefficient
lower than the coefficient of the first power of G of the
method developed in [44].
So, for the approximate integration of the time inde-

pendent radial Schr̈odinger equation the New Obtained
Low Algebraic Order Method with Vanished Phase-Lag
and its First and Second Derivatives is the most efficient
from theoretical point of view, especially for large values
of |G|= |Vc−E|.
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5. Stability Analysis

In this section we will study the stability of the new devel-
oped method. For this reason we apply the new obtained
method to the scalar test equation:

q′′ =−ω2q. (25)

whereω 6= φ and whereφ is the frequency in the scalar
test equation (4) where was based the phase-lag analysis
investigated above.

The above application to the scalar test equation (25)
leads to the following difference equation:

A2 (s,v) (qn+2+qn−2)+A1(s,v) (qn+1+qn−1)

+A0 (s,v) qn = 0 (26)

where

A2 (s,v) = 1, A1 (s,v) = − 1
40

T12

vcos(v)− sin(v)

A0 (s,v) =
1
20

T13

vcos(v)− sin(v)
(27)

where

T12 = −53 cos(v)s2v+53 cos(v)v3

+320v(cos(v))2+53 sin(v)s2

+159 sin(v)v2−160 sin(v)cos(v)−160v

T13 = −80(cos(v))2 sin(v)s2

+80(cos(v))2sin(v)v2

+53(cos(v))2s2v−53(cos(v))2v3

+240v(cos(v))3+53 sin(v)cos(v)s2

+159 sin(v)cos(v)v2

−80 sin(v) (cos(v))2

+80 sin(v)s2−80 sin(v)v2−106s2v+106v3

−120vcos(v)−40 sin(v)

ands= ω h.

Remark.The frequency of the scalar test equation (25), ω ,
which is used for the stability analysis is not equal with the
frequency of the scalar test equation (4), φ , which is used
for the phase-lag analysis, i.e.ω 6= φ .

Based on the analysis presented in Section 2, we have
the following definitions:

Definition 5.(see [16]) P-stable methods is called the method
with interval of periodicity equal to(0,∞).

Definition 6.Singularly almost P-stable is called the method
with interval of periodicity equal to(0,∞)−S1. The term
singularly almost P-stable method i used only in the cases
when the frequency of the scalar test equation for the phase-
lag analysis is equal with the frequency of the scalar test
equation for the stability analysis, i.e.ω = φ .

Thes− v plane for the method obtained in this paper
is shown in Figure 2.

Figure 2: s−v plane of the new produced method with vanished
phase-lag and its first and second derivatives

Remark.In order one to read the thes− v region, the fol-
lowing must be taken into account:

–The shadowed area denotes where the method is stable,
–The white area denotes the region where the method is
unstable.

Remark.There are problems for which their mathematical
models require the observation ofthe surroundings of the
first diagonal of the s−v plane. These are the cases of the
mathematical models where the frequency of the scalar test
equation used for the phase-lag analysis is equal with the
frequency of the scalar test equation used for the stability
analysis. In this category belong many problems in sci-
ences and engineering (for example the time independent
Schrödinger equation).

1 whereS is a set of distinct points
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Based on the above remark, we investigate the case
where the frequency of the scalar test equation used for
the phase-lag analysis is equal with the frequency of the
scalar test equation used for the stability analysis, i.e. we
study the case wheres= v (i.e. see the surroundings of the
first diagonal of thes− v plane). Based on this investiga-
tion we extract the results that the interval of periodicityof
the new developed method is equal to:(0,256).

The above study leads to the following theorem:

Theorem 3.The method obtained in section 3:

–is of fourth algebraic order,
–has the phase-lag and its first and second derivatives
equal to zero

–has an interval of periodicity equals to:(0,256) when
the frequency of the scalar test equation used for the
phase-lag analysis is equal with the frequency of the
scalar test equation used for the stability analysis

6. Numerical results

In this section we will study the effectiveness of the new
developed low algebraic order explicit four-step method.
The study will take place via the numerical solution of the
one-dimensional time-independent Schrödinger equation.

The radial time independent Schrödinger equation has
a mathematics model of the form :

q′′(r) = [l(l +1)/r2+V(r)− k2]q(r). (28)

This is a boundary value problem which has the following
boundary conditions :

y(0) = 0 (29)

and another boundary condition, for large values ofr, de-
termined by physical properties and characteristics of the
specific problem.

The mathematical model of the radial time indepen-
dent Schrödinger equation (28) consists from functions,
quantities and parameters. Here we give the definitions of
these functions, quantities and parameters :

1.The functionW(r) = l(l + 1)/r2+V(r) is calledthe
effective potential. This satisfiesW(x)→ 0 asx→ ∞,

2.The quantityk2 is a real number denotingthe energy,
3.The quantityl is a given integer representing theangu-

lar momentum,
4.V is a given function which denotes thepotential.

The method proposed in this paper belongs to the cate-
gory of the frequency dependent methods. Therefore in or-
der to apply these methods to any problem, the frequency
must be determined , i.e. we have to define the parameterφ
(see for example the notation after (4) and the formulae in
section 3) must be defined. For the category of problems

of the radial Schrödinger equation, the parameterφ (for
l = 0) is given by :

φ =
√

|V (r)− k2|=
√

|V (r)−E| (30)

whereV (r) is the potential andE is the energy.

6.1. Woods-Saxon potential

The well known Woods-Saxon potential is use for our nu-
merical experiments. The model of the Woods-Saxon po-
tential is given by :

V (r) =
u0

1+q
− u0q

a(1+q)2
(31)

with q= exp
[

r−X0
a

]

, u0 =−50, a= 0.6, andX0 = 7.0.

The behavior of Woods-Saxon potential is shown in
Figure 5.

Figure 3: The Woods-Saxon potential.

Some critical points on the description of the potential
can be defined for some potentials, such as the Woods-
Saxon potential. These critical points then are used in or-
der to determine the value of the parameterφ (see for de-
tails [45]).

Using the methodology presented in [46] and [47] and
for the purpose of our tests, we chooseφ as follows :

φ =























√
−50+E, for r ∈ [0,6.5−2h],√
−37.5+E, for r = 6.5−h√
−25+E, for r = 6.5√
−12.5+E, for r = 6.5+h√
E, for r ∈ [6.5+2h,15]

(32)

For example, in the point of the integration regionr =
6.5−h, the value ofφ is equal to:

√
−37.5+E. So,w=

φ h=
√
−37.5+Eh. In the point of the integration region

r = 6.5−3h, the value ofφ is equal to:
√
−50+E, etc.
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6.2. Radial Schr̈odinger Equation - The
Resonance Problem

In this section the effectiveness of the new obtained method
is investigated using the numerical solution of the radial
time independent Schrödinger equation (28) with the Woods-
Saxon potential (31). Initially it is necessary to approx-
imate the true interval of integration, which is equal to

r ∈
(

0,∞
)

, by a finite one. For our numerical purposes we

consider the integration intervalr ∈ [0,15]. We will solve
the above mentioned problem described by equation (28)
in a rather large domain of energies, i.e.,E ∈ [1,1000].

The Schrödinger equation effectively reduces to

q′′ (r)+

(

k2− l(l +1)
r2

)

q(r) = 0 (33)

for r greater than some valueR for the case of positive en-
ergies,E = k2. This is because the potential decays faster
than the terml(l+1)

r2 .
In the above mathematical model, the differential equa-

tion has linearly independent solutionskr j l (kr) andkrnl (kr),
where j l (kr) andnl (kr) are the spherical Bessel and Neu-
mann functions respectively. Thus, the solution of equa-
tion (28) (whenr → ∞), has the asymptotic form

q(r)≈ Akr jl (kr)−Bkrnl (kr)

≈ AC

[

sin

(

kr− lπ
2

)

+ tandl cos

(

kr− lπ
2

)]

(34)

whereδl is the phase shift that may be calculated from the
formula

tanδl =
y(r2)S(r1)− y(r1)S(r2)

y(r1)C(r1)− y(r2)C(r2)
(35)

for r1 andr2 distinct points in the asymptotic region (we
chooser1 as the right hand end point of the interval of inte-
gration andr2 = r1−h) with S(r) = kr j l (kr) andC(r) =
−krnl (kr). Since the problem is treated as an initial-value
problem, we needy j , j = 0,(1)3 before starting a four-
step method. From the initial condition, we obtainy0. The
valuesyi , i = 1(1)3 are obtained by using high order Runge-
Kutta-Nyström methods(see [48] and [49]). With these start-
ing values, we evaluate atr2 of the asymptotic region the
phase shiftδl .

The known as resonance problem is hold for the case
of positive energies. This problem consists either of

–finding the phase-shiftδl or
–finding thoseE, for E ∈ [1,1000], at whichδl =

π
2 .

We actually solve the latter problem, known asthe res-
onance problem.

The boundary conditions for this problem are:

q(0) = 0, q(r) = cos
(√

Er
)

for larger. (36)

We compute the approximate positive eigenenergies of
the Woods-Saxon resonance problem using:

–The eighth order multi-step method developed by Quin-
lan and Tremaine [50], which is indicated asMethod
QT8.

–The tenth order multi-step method developed by Quin-
lan and Tremaine [50], which is indicated asMethod
QT10.

–The twelfth order multi-step method developed by Quin-
lan and Tremaine [50], which is indicated asMethod
QT12.

–The fourth algebraic order method of Chawla and Rao
with minimal phase-lag [52], which is indicated asMethod
MCR4

–The exponentially-fitted method of Raptis and Allison
[51], which is indicated asMethod MRA

–The hybrid sixth algebraic order method developed by
Chawla and Rao with minimal phase-lag [53], which
is indicated asMethod MCR6

–The classical form of the fourth algebraic order four-
step method developed in Section 3, which is indicated
asMethod NMCL 2.

–The Phase-Fitted Method (Case 1) developed in [1],
which is indicated asMethod NMPF1

–The Phase-Fitted Method (Case 2) developed in [1],
which is indicated asMethod NMPF2

–The Method developed in [44] (Case 2), which is indi-
cated asMethod NMC2

–The Method developed in [44] (Case 1), which is indi-
cated asMethod NMC1

–The New Obtained Method developed in Section 3,
which is indicated asMethod NMPLD2V

Table 1: Characteristics of the Methods of the same algebraic
order compared in our numerical experiments. PL: Phase-Lag,
DPL: First Derivative of the Phase-Lag, DDPL: Second Deriva-
tive of the Phase-Lag

Method Algebraic Order PL DPL DDPL
NMPF1 4 0 − 161

9360v5 − 161
1040v4

NMPF2 4 0 − 329
17040v5 − 987

5680v4

NMC1 4 0 0 − 161
2340v4

NMC2 4 0 0 − 329
4260v4

NMPLD2V 4 0 0 0

We defined some reference values using the well known
two-step method of Chawla and Rao [53] with small step
size for the integration. We then compared the numerically
calculated eigenenergies with these reference values. In
Figures 4 and 5, we present the maximum absolute error
Errmax= |log10(Err) | where

Err = |Ecalculated−Eaccurate| (37)

of the eigenenergiesE2= 341.495874andE3 = 989.701916
respectively, for several values of CPU time (in seconds).

2 with the term classical we mean the method of Section 3 with
constant coefficients
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Figure 4: Accuracy (Digits) for several values ofCPU Time (in
Seconds) for the eigenvalueE2 = 341.495874. The nonexistence
of a value of Accuracy (Digits) indicates that for this valueof
CPU, Accuracy (Digits) is less than 0

CPU time (in seconds)

E
rr

m
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x

Figure 5: Accuracy (Digits) for several values ofCPU Time (in
Seconds) for the eigenvalueE3 = 989.701916. The nonexistence
of a value of Accuracy (Digits) indicates that for this valueof
CPU, Accuracy (Digits) is less than 0

We note that the CPU time (in seconds) counts the compu-
tational cost for each method.

7. Conclusions

In this paper, we studied a family of low algebraic order
explicit four-step methods. The main subjects of this study
was:

–the investigation of the vanishing of the phase-lag and
its first and second derivatives

–the comparative error analysis
–the stability analysis.
–the computational behavior of the new produced method
and its effectiveness on the numerical solution of the
radial Schrödinger equation and related problems.

From the numerical experiments mentioned above, we
have the following :

1.The classical form of the tenth algebraic order four-
step multiderivative method developed in Section 3,
which is indicated asMethod NMCL is more efficient
than the fourth algebraic order method of Chawla and
Rao with minimal phase-lag [52], which is indicated as
Method MCR4. Both the above mentioned methods
are more efficient than the exponentially-fitted method
of Raptis and Allison [51], which is indicated asMethod
MRA .

2.The tenth algebraic order multistep method developed
by Quinlan and Tremaine [50], which is indicated as
Method QT10 is more efficient than the fourth alge-
braic order method of Chawla and Rao with minimal
phase-lag [52], which is indicated asMethod MCR4.
TheMethod QT10 is also more efficient than the eighth
order multi-step method developed by Quinlan and Tremaine
[50], which is indicated asMethod QT8. Finally, the
Method QT10 is more efficient than the hybrid sixth
algebraic order method developed by Chawla and Rao
with minimal phase-lag [53], which is indicated asMethod
MCR6 for large CPU time and less efficient than the
Method MCR6 for small CPU time.

3.The twelfth algebraic order multistep method devel-
oped by Quinlan and Tremaine [50], which is indicated
asMethod QT12 is more efficient than the tenth order
multistep method developed by Quinlan and Tremaine
[50], which is indicated asMethod QT10

4.The Phase-Fitted Method (Case 1) developed in [1],
which is indicated asMethod NMPF1 is more effi-
cient than the classical form of the fourth algebraic or-
der four-step method developed in Section 3, which is
indicated asMethod NMCL , the exponentially-fitted
method of Raptis and Allison [51] and the Phase-Fitted
Method (Case 2) developed in [1], which is indicated
asMethod NMPF2

5.The Method developed in [44] (Case 2), which is in-
dicated asMethod NMC2 is more efficient than the
classical form of the fourth algebraic order four-step
method developed in Section 3, which is indicated as
Method NMCL , the exponentially-fitted method of Rap-
tis and Allison [51] and the Phase-Fitted Method (Case
2) developed in [1], which is indicated asMethod NMPF2
and the Phase-Fitted Method (Case 1) developed in [1],
which is indicated asMethod NMPF1

6.The Method developed in [44] (Case 1), which is indi-
cated asMethod NMC1, is the more efficient than all
the other methods mentioned above.

7.The New Obtained Method developed in Section 3,
which is indicated asMethod NMPLD2V , is the most
efficient one.
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All computations were carried out on a IBM PC-AT
compatible 80486 using double precision arithmetic with
16 significant digits accuracy (IEEE standard).

Appendix: Formulae of the derivatives ofqn

Formulae of the derivatives which presented in the formu-
lae of the Local Truncation Errors:

q(2)n = (V(x)−Vc+G) q(x)

q(3)n =

(

d
dx

g(x)

)

q(x)+ (g(x)+G)
d
dx

q(x)

q(4)n =

(

d2

dx2 g(x)

)

q(x)+2

(

d
dx

g(x)

)

d
dx

q(x)

+(g(x)+G)2q(x)

q(5)n =

(

d3

dx3 g(x)

)

q(x)+3

(

d2

dx2 g(x)

)

d
dx

q(x)

+4 (g(x)+G)q(x)
d
dx

g(x)+ (g(x)+G)2
d
dx

q(x)

q(6)n =

(

d4

dx4 g(x)

)

q(x)+4

(

d3

dx3 g(x)

)

d
dx

q(x)

+7 (g(x)+G)q(x)
d2

dx2 g(x)+4

(

d
dx

g(x)

)2

q(x)

+6 (g(x)+G)

(

d
dx

q(x)

)

d
dx

g(x)

+(g(x)+G)3q(x)

q(7)n =

(

d5

dx5 g(x)

)

q(x)+5

(

d4

dx4 g(x)

)

d
dx

q(x)

+11(g(x)+G)q(x)
d3

dx3 g(x)+15

(

d
dx

g(x)

)

q(x)

d2

dx2g(x)+13(g(x)+G)

(

d
dx

q(x)

)

d2

dx2g(x)

+10

(

d
dx

g(x)

)2 d
dx

q(x)+9 (g(x)+G)2q(x)

d
dx

g(x)+ (g(x)+G)3 d
dx

q(x)

q(8)n =

(

d6

dx6 g(x)

)

q(x)+6

(

d5

dx5 g(x)

)

d
dx

q(x)

+16(g(x)+G)q(x)
d4

dx4g(x)+26

(

d
dx

g(x)

)

q(x)

d3

dx3 g(x)+24(g(x)+G)

(

d
dx

q(x)

)

d3

dx3 g(x)

+15

(

d2

dx2g(x)

)2

q(x)+48

(

d
dx

g(x)

)

(

d
dx

q(x)

)

d2

dx2 g(x)+22(g(x)+G)2q(x)

d2

dx2 g(x)+28(g(x)+G)q(x)

(

d
dx

g(x)

)2

+12(g(x)+G)2
(

d
dx

q(x)

)

d
dx

g(x)

+(g(x)+G)4q(x)

. . .
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