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Abstract: We consider a class of singularly perturbed parabolic diffgal equations with two small parameters affecting the
derivatives. The solution to such problems typically hasapalic layers. We discretize the time variable by meansefdiassical
backward Euler method. At each time level a two-point boupdalue problem is obtained. These problems are, in tustrétized in
space on a uniform mesh following the nonstandard methggtad® Mickens. We prove that the underlying discrete opersadisfies

a minimum principle. We use this result in the error analydis show that the method is uniformly convergent with respedhe
perturbation parameters. This is contradictory with theeeson [G.I. Shishkin, A difference scheme for a singylaerturbed equation

of parabolic type with discontinuous initial conditioBoviet Math. Dokl.37 (1988) 792-796] that parameter-uniform numerical
methods cannot be designed on a uniform mesh for problemsembaution exhibits parabolic layers. Finally we give ntices
results to attest the parameter-uniform convergence. dere comparison with some existing methods in the liteefaroves the
competitiveness of our method.

Keywords: Parabolic reaction-convection-diffusion problems, $iag perturbations, fitted operator finite difference methcerror
bounds, uniform convergence

1 Introduction example P], [6], [11], [15], [16], [17] and the survey
article [8]).

The research field of singular perturbation problems All the work cited above concerns SPPs in which the
(SPPs), which originated in the early nineteeBgwith perturbation parameter affects the highest derivative
the development of the boundary-layer idea in viscousterms. While it is known that physical problems often
flow [24] has flourished over the last few decades. Despitenvolve several parameter2(l, as far as numerical
the large amount of work accomplished in this field, theremethods are concerned, not much is known. In particular,
is still avenue for relevantly more opportune research. ~ since the pioneering work of O'Malley on two-parameter
A small parameter affecting the highest derivative in S.PPS'I.Q], very few re§earchers have followed suit in this
the governing equation of a given SPP gives rise to largélirection. Below we give some examples.
gradients in the solution over narrow regions of the  O'Riordan et al. [21] derive parameter-explicit
domain, notwithstanding that large gradients could alsotheoretical bounds on the derivatives of the solutions to
result from possible discontinuities in the data of the two-parameter singularly perturbed BVPs. They also
problem. For more information about SPPs, readers argonstruct a finite difference method. For the same family
referred to #], [13], [25] and the references therein. of problems, Roos and Uzelac2q design a
The determination of the analytical solution is often a streamline-diffusion finite element method. Lin and
difficult task. The search of numerical approximations viaRoos [LO] use a barrier-function technique to derive
classical methods have shown limited success in that thepounds on the derivatives and use these bounds to analyse
require the use of a large number of mesh points whichan upwind-difference scheme. Graeigal. [7] develop a
increases both the round-off error and the computationainonotone numerical method and establish an asymptotic
cost. Several alternatives which provide acceptablesrror bound whose error constants are independent of the
numerical approximations exist in the literature (See forsingular perturbation parameters.
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The class of singularly perturbed two-parameterreplicating this property of the continuous operaltgg,
parabolic reaction-diffusion-convection problem is we establish its uniform stability in the maximum norm.
studied by O'Riordaret al. [22] and Kabadalbajoo and Then we show that the proposed FOFDM is uniformly
Yadaw P]. The former authors derive bounds on the convergent with respect to the perturbation parameters
derivatives of the solutions and use them to analyse amndp. This is in contradiction with the claim which was
upwind finite difference method while the latter design made in P8 and relayed in 9], [22] that
and a finite element method. parameter-uniform numerical methods cannot be

We note that all the works above use Shishkin type ofdesigned on a uniform mesh for problems whose solution
meshes. Up to the best of our knowledge, no publicationexhibits parabolic layers.
reports the use of uniform meshes except Patid@3 [ Finally we provide numerical results to attest the
where he solves two-parameter singularly perturbed BVPgarameter-uniform convergence. Moreover, comparison
using a fitted operator approach. with some existing methods in the literature proves the

The aim of the present paper is to solve a class ofcompetitiveness of the method.
time-dependent singularly perturbed convection-difinsi The rest of the paper is organised as follows. Section
problems with two parameters affecting the diffusion and2 is devoted to temporal discretization. We present the
the convection terms. More precisely, we are concernedocal and global error estimates. Spatial discretizat®n i
with the problem of findingu(x,t) such that for all the subject of Section 3. We prove that the fitted operator

(xt) €eQ=0Q x(0,T], 2 =(0,1), satisfies a minimum principle. We use this fact to
establish a stability result. In section 4, we show that the
d%u Ju odu method is uniformly convergent with respect to the

LytU = €= + pa(x)=— — b(x)u(x) — Fi f(xt),

2 X perturbation parameters. Numerical results confirming

(1.1)  our findings are provided in Section 5. We also test the
(x,t) € D, subject to the initial and boundary conditions  method for accuracy in comparison with some existing

_ methods. Finally, some conclusions are drawn in Section
U(Xa O) = UO(X)a Xe Qa (12) 6.

u(0,t) =u(Lt) =0,t € [0, T], (1.3) 2 Temporal discretization

with two small parameters & ¢, < 1. The functions
a(x), b(x) and f(x,t) are sufficiently smooth and satisfy
alx) > a >0 andb(x) > B > 0; o and 3 are real
numbers. The solution td (1)-(1.3) has parabolic layers.

We use the implicit Euler method to discretize the time
variable with a uniform step size so that the time interval
[0,T] is partitioned as

Such problems are encountered in several contexts W ={ty=kr, 0<k<K, 1=T/K}. (2.4)

including chemical flow reactor theor{]} [27], [29] and , o i ,

lubrication theory §]. We obtain the following linear system in space at each time
Note that the continuous operatbg; satisfies the —€Vel )

following minimum principle. Lz = 20(X,bc) + Ha(X) 2%, t) — <b(x) + ?) 2(x, 1)

Lemma 11(Continuous  Minimum Principle) If 1

Y(x,t) € C3(Q)NCO(Q) is such thaty(x,t)|5o > 0 and = f(x,t) — ?Z(X,tk_l), (2.5)

L x,t)|lo <0, theny(x,t)|5 > 0.
¥ xblo Vi blo _ subject to the conditions

Proof. Let us assume that there is a poimt,t*) € Q
such thaty(x*,t*) < 0 and(x*,t*) = min(x,t)e(ﬁ‘ﬂ(xvt)' Z(x,0) = up, ¥x € (0,1); z(0,tx) =z(1,tx) =0. (2.6)
Clearly (x*,t*) ¢ 0Q. It follows that yy(x*,t*) = 0,  The local truncation error of the time discretizatich5
(X", t*) = 0 and Yux(X",t*) > 0 and this implies that is defined bye = u(x,tc) — 2(x,tc), whereZ(x,t) is the
Lxt(x*,t*) > 0, which is a contradiction. Thus solution of the two-point boundary value problem
P(x*,t*) > 0. It follows thaty(x,t) > 0, V(x,t) € Q. 1

We propose a numerical scheme which we design in £z«(X,tk) + Ha(x)z«(X,tx) — <b(x) + —) Z(X,tk)
two steps. Firstly the time variable is discretized usirgy th T
classical backward Euler method. This leads to a system _ f (X, t) — }u(x 1) 2.7)
of boundary value problems. These problems are, in turn, ’ T '
discretized in space on a uniform mesh following the along withz(0,tx) = z(1,tc) = 0. The global error at time
nonstandard methodology of Micken$Z. We refer to  level t,, which we denote by, is the sum of all local
this scheme as a fitted operator finite difference methoderrors anterior and up to time levigi
(FOFDM). ‘

After proving that the fitted operator of the fully E— 237 k<T/T.

discrete problem satisfies a minimum principle, thus %
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We now state results for the bounds on these errors3 The fully discrete problem

Readers are referred tg][for a proof. _ . - .
Let QN denote the following partition of0,1] into N

Lemma 21(Local error estimateJhe local error estimate subintervals such that

of the time discretization is given by

IIB(IIMSMTZ,lﬁkSK. 2.8) X0=0,X =xo+ih, i =1(1)n, h=x —Xi_1,Xn = 1,

= QN x @ be the grid for thex,t-variables, and

In the lemma above and in the rest of the papdr, N;K _ QNK ﬁQ With reference to the nonstandard

represents a generic constant which is independent of thg .
parameterss and yu as well as of the time and space Inite difference (NSFD) methodology of Mickens,

discretization parameters and which may assumewﬁhcsur}f;rblfgtbtgfngoalllrm\é'gg d?t?:rfsme to soh2q) along
differents values in equations or inequalities where it is y

involved. NK o oy I (X1, te) — 22U (X, t) +U (X1, )
Lemma 22(Global error estimate)The global error <P,2
estimate of the time discretization is given by U (%41, t) — U (%), t)
Fpa(x ’ ’
Bl < C. 2.9) Habx) P
1
Proof. See [L§]. - (b(Xj) + —) U (xj,t)
For the sake of simplicity, we ignore the second Tl

argument of the functiomas, in factzis a function of the = f(xj.t) — ~U (X}, 1) (3.12)

single variablex. The differential operatdry in boundary
value problemsZ.5-(2.6) satisfies the following discrete subject to the discrete initial and boundary conditions

minimum principle: U(x},0) = Up(X}), Xj € aN:

Lemma 23(Continuous Minimum Principle 11}f &(x) is —x

any sufficiently smooth function satisfyirgy0) (z) o, YO =ULt)=0 teaw" (3.13)
&(1) > 0and L& (x) < 0for all x € Q. Then&(x) >0 The denominatorl‘unctioqlrj2 is given by

forallx € Q. h h

Proof. See the proof of Lemma1l and ignore the time qojz(h,e,u) = (pj2 __® (exp(w) — 1) .
variable Ha(x;) €

(3.14)

The convergence analysis of the numerical schem . . .
he scheme above results in a system of linear equations

which we propose requires that we use some bounds o
the solution and its derivatives. The solutiokgx) < 0 AU = F. (3.15)
andA;(x) > 0 of the charateristic equation

The entries of the tridiagonal matrixand column-vector

eA2(X) + pa(x)A (x) — (b(x) + %) =0 (210) Fare

Aj =T, i=j+1j=11)(n-2), (3.16)
are use_d to describe thg boundary layers-ab andx =1, Aj = r]?, i=j;j=11)(n—-1), (3.17)
respectively. The following Lemma was proved 8}.[ P ,

Aj =7, |:J—1'J:12(1)(n—1), (3.18)

Lemma 24For any pe (0,1) we have, up to a certain
order g that depends on the smoothness of the function 1 k=1y. i _ B
a(x), b(x) and f(xt), ﬁ:J = f(xj,t%) U(Xjat ) 1=11)(h-1), (3.19)

diz where

dz <C(1+ e oy ple i) (211 e (zg+ua(xj)+ (b(x)+1>>
=, J:— - J - !
i <P,2 q;JZ h T

for0<j<q.
The quantitiegip andy; are defined agip = — %ell]x)\o(x) = % n “ar(]xi) _ (3.20)
’ i

The scheme 312-(3.19 is a fitted operator finite
difference method (FOFDM) to solva&.()-(1.3) . Itis an
extension of the method presented 28][to the class of
two-parameter time-dependent singularly perturbed
problems L.1)-(1.3).

We adopt the notatiom = w(x;,t) for ease of
exposition in the rest of the paper

= minA¢(X).
andpy min 1(X)

Remark 25lt is to be noted that, ifi? << g i.e y?/e =0
ase — 0, thenpp ~ py ~ miny/(b(x) +1/1)e~1 and we
have boundary layers at % 0 and x= 1. The situation
of one external layer (at x 0) is encountered in the case
wheres << u?i.eg/u?— 0asu — 0. Inthis casep; ~0

andpp ~ min &(X). The discrete operator of the schem&1Q)-(3.13
€01 & safisfies the following minimum principle.
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Lemma 31(Discrete minimum principle)Assume that
LNX is the discrete operator given i8(L2 and¥ is any
mesh function satisfying
Wo>0, 0<j<NY >0 W=>0 0<k<K. If
LMKk > 0in QF, thenwk > 0in Q¥.

Proof. Let sandl be indices sucht tha#' = |(”n|r)1l1Uk for
ik

HUJ-k € QVK, Assume that! < 0. It is easy to see that
(s1) e {1,2,--- )N} x {1,2,--- K}, because otherwise
Wl > 0. It follows that¥ ; — 44 >0 and¥} , — ¥ > 0.
Thus NKy! < 0, which is a contradiction. Therefore
W! > 0. The indicess and| being arbitrary, we obtain
wk >0in ij

In the next section, we analyze the proposed method
In the analysis, we will evoke the

for convergence.
following stability result.

Lemma 32(Uniform stability estimateAt any time level
t, if Z! is any mesh function such thaf Z Z = 0, then

1
1z <= max |LNKZk| for0<i<N.

oM (3.21)

In other words, the operator:X is uniformly stable.

Proof. Let (W*)X be the mesh function defined by

(WEk=pxZK

where
P

max
B 1<j<N-1

— (W

ILNKZY|.

We have(W+)§
N —1, we have

=P > 0. Moreover, for I< j <

(bj+1/1)
B
Using the fact that O< B < b; < bj +1/1, we have

LNK(w#)k < 0. By the discrete minimum principle
above, We obtain

LNV )k = — max [LNKZK| £ LNz,

1<j<N-1

(WH)k>0,foro<j<N

and this ends the proof.

4 Convergence analysis

The following analysis concerns the space variabl/e
will thus drop the time level indices (for now) for the sake
of simplicity. The local truncation error of FOFDNB(12)-
(3.13is

Using Taylor series expansions and taking into account the
truncated Taylor expansion

1 1 pa Ml
qojz h2  2eh ' 12¢2° (4.23)
we obtain
2,212
NKp. ) — pajh uajhz_uajh - uaJ I
L, ZJ)‘( > tae iz ) z
pajh* g2 peath’
+ -
48¢ 24 288¢
« (Z(iv)(sl)_’_z(iv)(sz))
a-h2 .
-EE A (g) (4.24)

whereé; € (Xj,Xj4+1), | € {1,3} and&; € (xj_1,X;j). Using
bounds on derivatives of (LemmaZ24), the fact that for
smallh, h* < h® < h? < h and noticing that ( se€lf] for
a proof) bothu exp(—ppiox;) and pj exp(—ppz(1—x;))
approach zero as— O foralll € {0,1,2,---}, we obtain

ILNK(Uj —z))| < Mh, (4.25)
Now, invoking the uniform stability estimate (Lemr3a)
yields

max U — Z{| < Mh,

0<j<N

(4.26)

Note that we have re-instate the dropped time level index.
Since by Lemma22 we have0<rp<a}<x|z‘f— u¥| < M1, we

obtain the main and final result of this work.

Theorem 41Let u(x,t) be the solution of {.1)-(1.3) and
U (xj,t) its numerical approximation obtained v{8.12-
(3.14. Then there exists a constant M independeiat ¢f,
T and h such that

Uf—u| <M(h+T1). (4.27)

max
0<j<N,0<k<K

This result indicates that the numerical method developed
in this work is first order convergent, independently of the
parameters andyu. In the next section, we test this method
and compare the numerical results obtained with the works
in[9], [22].

5 Numerical results

LN*K(U,- -7j) = (Lx— LN7K)zj The maximum errors at all the mesh points are evaluated
= &7/ + pajZ using the formula
Zj41—2Zj+zj Zj11-Z
j+1 ] j—1 j+17 4
—£ —Ua; (4.22) ENK _ ax uNKy Ky
(ij 1" EH T e jINOSkeK (Ue i )ik — (Ue)jk
(@© 2015 NSP
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if the exact solutioni(x, t) is available. However, since the ~Table 1: The maximum pointwise errors far= 22 for various
exact solution for Examplg1 below is not known, we use values ofe andN(=K)

a variant of the double mesh principle

e | N-8 N-16 N-32 N-64 N—-128 N—256 N-512
2 | 8.12E-3 4.39E-3 2.32E-3 1.22E-3 6.24E-4 3.16E-4 1.59E-4
NK N,K | 2N,2Ky 272 | 1.72E-2 7.10E-3 3.11E-3 1.44E-3 6.89E-4 3.37E-4 1.67E-4
Eep = o<'<rTN]%)<(k<K Uei )ik — (U™ )2j2¢| - 24 | 301E2 1.16E2 450E-3 190E-3 8.66E-4 4.12E-4 201E-4
SISNOSKE 26 | 511E-2 1.95E-2 7.29E-3 2.91E-3 1.27E-3 5.89E-4 2.84E-4
NK NK 28 | 626E-2 321E-2 1.31E-2 4.91E-3 1.92E-3 8.19E-4 3.75E-4
In the above,(uzj, )i« and (U, )j« are the exact and | 2, | 0562 24057 100 22028 22008 S2E8 Ao
approximate solutions ObtainedzldSZiKng aconstanttime step,-14 | g2ge-> 343e2 176E-2 B85E-3 4.42E-3 220E-3 1.10F-3

T and space step. Likewise, (Ug ;" )2j 2« is computed : : : : : ; : :

using the constant time step2 and space step'2. Also, 2740 | 6.28E-2 3.43E-2 1.76E-2 8.85E-3 4.42E-3 2.20E-3  1.10E-3

we compute the numerical rates of convergence as
follows [4]:

NLK) 22N, 2K Table 2: The orders of convergence far = 22 for various
Nn=r =1 EV/ESNT), 1=1,2,---
| =Tepl = 10G(Ee)™ /Be ™), e values ofe andN(=K)
. e [N=8 N=16 N=32 N=64 N=128 N=256 N=512
Example 51We consider problem 2 | 088 092 093 096 0.98 0.99 0.99
92U au au 2*2 1.28 1.19 1.11 1.06 1.03 1.02 1.01
_ 271 y\2 2~ 1.38 1.36 1.24 1.14 1.07 1.04 1.02
Eaxz + “(1+X)& —u(x) - ot 16¢(1-x)%, 26| 139 142 133 120 1.10 1.05 1.03
278 | 0.97 1.29 1.42 1.35 1.23 1.13 1.06
(th) € (07 1) X (Oa 1] 2710 1 0.87 0.97 1.09 1.32 1.40 1.31 1.19
_ ~ 27121 0.87 0.97 0.99 1.01 111 1.32 1.40
u(x’ O) =0,xeQ, 2714 | 0.87 0.97 0.99 1.00 1.00 1.01 1.00
U(O,t) =0, U(l,t) =0,te [0, 1] :
2740 | 0.87 0.97 0.99 1.00 1.00 1.00 1.00

In Fig. 1 we plot the profile of the numerical solution
obtained via the proposed FOFDM fbr= 128 K = 64
and various values of and u. We note the very high
gradients neax =0 for e = 2% andu = 1.

The maximum pointwise errors of our method when values ofe andN(= K)

Table3: The maximum pointwise errors for= 219 for various

implemented on the example given above are provided i
| 1 d3f _272 d _2,10 W th t f £ N=8 N=16 N=32 N=64 N=128 N=256 N=512
t'_ab eslandsior u = anap = - Yve see that, ror 2 | 813E3 441E3 232E-3 121E3 622E4 316E4 L59E-4
fixed h and 1, the maximum error is constant as 2*i 1.77E-2 7.18E-3 3.09E-3 141E-3 6.75E-4 3.29E-4 163E-4
H : 2” 3.34E-2 1.17E-2 4.24E-3 1.72E-3 7.58E-4 3.55E-4 1.71E-4
_approaCheS 'ZerO. ; ThIS ConflrmS that the_ methOd 26 | 463E-2 1.63E-2 565E-3 2.11E-3 8.78E-4 3.96E-4 1.87F-4
implemented iss-uniformly convergent. Thet-uniform 28 | 5.24E-2 184E-2 6.24E-3 2.29E-3 9.33E-4 412E-4 1.93F-4
convergence is shown in Tablewhere for fixede, h and 2719|5422 189E-2 6.38E-3 233E-3 943E-4 415E-4  194E-4
. . 2712 | 546E-2 1.90E-2 6.41E-3 2.34E-3 9.45E-4 4.16E-4 1.94E-4
T, the maximum error 1S constant gs tends to zero. 2714 | 548E-2 191E-2 6.43E-3 2.34E-3 9.46E-4 4.16E-4 1.94E-4
Tables2, 4 and6 give the the orders of local convergence. 2*12 549E-2 191E-2 6.45E-3 235E-3 048E-4 4.17E-4 1.94E-4
H H . H 2- 5.49E-2 1.92E-2 6.47E-3 2.36E-3 9.53E-4 4.18E-4 1.94E-4
A comparison of results in tablé@sand4 with those in 2720 | 549E-2 1.92E-2 6.47E-3 2.36E-3 9.58E-4 4.22E-4 1.96F-4
tables 1 and 2 of]2] suggests that our method converges | 222 | 5492 19262 6.47E-3 2.36E-3 9.58E-4 4.22E-4 197E-4
faster than the one presented in that work. Similar| : : : : : : : :
comparative data can be drawn for the method gh [ 2740 | 549E-2 1.92E-2 6.47E-3 2.36E-3 9.58E-4 4.22E-4 1.97F-4
including with respect to accuracy since the maximum
error produced by our method is much smaller (see Table
7. Table 4: The orders of convergence far = 210 for various
values ofe andN(= K)
i £ N=8 N=16 N=32 N=64 N=128 N=256 N=512
6 Conclusion 2 | 088 0093 093 096 0.98 0.99 0.99
272 | 1.30 1.22 1.13 1.07 1.04 1.02 1.01
. . 24 1.51 1.46 1.31 1.18 1.10 1.05 1.03
We treated a class of singularly perturbed parabolic| 26 | 151 153 142 127 115 1.08 1.04
differential equations with two small parameters affegtin | 2° | 151 156 144 130 118 110 1.05
the derivatives. A temporal discretization by means of the| 2, | %2 157 145 130 118 110 105
: : p Yy ! 2712 | 152 1.57 1.46 1.31 1.18 1.10 1.05
classical backward Euler method and spatial| 24| 152 157 146 131 1.18 1.10 1.05
discretization on a uniform mesh following the ;j: Le2 187 las 13l 119 L1019
nonstandard methodology of Mickens led to a fully |50 | 15 157 145 130 118 111 106
discrete problem whose underlying operator safisfied g 222 | 152 157 145 130 1.18 1.10 1.06
minimum principle. A convergence analysis based on this| : : : : : : ; :
fact showed that the proposed method is robust with 24| 152 157 145 130 1.18 1.10 1.06
respect to the perturbation parameters in the sense that the
(@© 2015 NSP
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e=1, p=1/20 Table 7. Comparison of numerical results via the proposed
scheme and the scheme 8] [

5 Scheme N=128 N=256 N=512 N=1024
ﬁ Maximum | Proposed scheme 1.49E-03 7.16E-04 3.50E-04 1.73F-04
errors Scheme in9] 3.09E-03 1.86E-03 1.02E-03 5.37E-03
S Orders of | Proposed scheme 1.06 1.03 1.02
05 . 05 Convergencel Scheme ing] 0.73 0.86 0.93

taxis x axis

e=1/2% pu=1/2%

Solution
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