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Abstract: We consider a class of singularly perturbed parabolic differential equations with two small parameters affecting the
derivatives. The solution to such problems typically has parabolic layers. We discretize the time variable by means of the classical
backward Euler method. At each time level a two-point boundary value problem is obtained. These problems are, in turn, discretized in
space on a uniform mesh following the nonstandard methodology of Mickens. We prove that the underlying discrete operator satisfies
a minimum principle. We use this result in the error analysis. We show that the method is uniformly convergent with respect to the
perturbation parameters. This is contradictory with the assertion [G.I. Shishkin, A difference scheme for a singularly perturbed equation
of parabolic type with discontinuous initial condition,Soviet Math. Dokl.37 (1988) 792-796] that parameter-uniform numerical
methods cannot be designed on a uniform mesh for problems whose solution exhibits parabolic layers. Finally we give numerical
results to attest the parameter-uniform convergence. Moreover, comparison with some existing methods in the literature proves the
competitiveness of our method.
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1 Introduction

The research field of singular perturbation problems
(SPPs), which originated in the early nineteens [5] with
the development of the boundary-layer idea in viscous
flow [24] has flourished over the last few decades. Despite
the large amount of work accomplished in this field, there
is still avenue for relevantly more opportune research.

A small parameter affecting the highest derivative in
the governing equation of a given SPP gives rise to large
gradients in the solution over narrow regions of the
domain, notwithstanding that large gradients could also
result from possible discontinuities in the data of the
problem. For more information about SPPs, readers are
referred to [4], [13], [25] and the references therein.

The determination of the analytical solution is often a
difficult task. The search of numerical approximations via
classical methods have shown limited success in that they
require the use of a large number of mesh points which
increases both the round-off error and the computational
cost. Several alternatives which provide acceptable
numerical approximations exist in the literature (See for

example [2], [6], [11], [15], [16], [17] and the survey
article [8]).

All the work cited above concerns SPPs in which the
perturbation parameter affects the highest derivative
terms. While it is known that physical problems often
involve several parameters [20], as far as numerical
methods are concerned, not much is known. In particular,
since the pioneering work of O’Malley on two-parameter
SPPs [19], very few researchers have followed suit in this
direction. Below we give some examples.

O’Riordan et al. [21] derive parameter-explicit
theoretical bounds on the derivatives of the solutions to
two-parameter singularly perturbed BVPs. They also
construct a finite difference method. For the same family
of problems, Roos and Uzelac [26] design a
streamline-diffusion finite element method. Linß and
Roos [10] use a barrier-function technique to derive
bounds on the derivatives and use these bounds to analyse
an upwind-difference scheme. Graciaet al. [7] develop a
monotone numerical method and establish an asymptotic
error bound whose error constants are independent of the
singular perturbation parameters.
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The class of singularly perturbed two-parameter
parabolic reaction-diffusion-convection problem is
studied by O’Riordanet al. [22] and Kabadalbajoo and
Yadaw [9]. The former authors derive bounds on the
derivatives of the solutions and use them to analyse an
upwind finite difference method while the latter design
and a finite element method.

We note that all the works above use Shishkin type of
meshes. Up to the best of our knowledge, no publication
reports the use of uniform meshes except Patidar’s [23]
where he solves two-parameter singularly perturbed BVPs
using a fitted operator approach.

The aim of the present paper is to solve a class of
time-dependent singularly perturbed convection-diffusion
problems with two parameters affecting the diffusion and
the convection terms. More precisely, we are concerned
with the problem of findingu(x, t) such that for all
(x, t) ∈ Q= Ω × (0,T], Ω = (0,1),

Lx,tu≡ ε
∂ 2u
∂x2 + µa(x)

∂u
∂x

−b(x)u(x)−
∂u
∂ t

= f (x, t),

(1.1)
(x, t) ∈ D, subject to the initial and boundary conditions

u(x,0) = u0(x), x∈ Ω̄ , (1.2)

u(0, t) = u(1, t) = 0, t ∈ [0,T], (1.3)

with two small parameters 0< ε,µ ≤ 1. The functions
a(x), b(x) and f (x, t) are sufficiently smooth and satisfy
a(x) ≥ α > 0 and b(x) ≥ β > 0; α and β are real
numbers. The solution to (1.1)-(1.3) has parabolic layers.
Such problems are encountered in several contexts
including chemical flow reactor theory [1], [27], [29] and
lubrication theory [3].

Note that the continuous operatorLx,t satisfies the
following minimum principle.

Lemma 11(Continuous Minimum Principle) If
ψ(x, t) ∈ C2(Q)∩C0(Q̄) is such thatψ(x, t)|∂Q ≥ 0 and
Lx,tψ(x, t)|Q ≤ 0, thenψ(x, t)|Q̄ ≥ 0.

Proof. Let us assume that there is a point(x∗, t∗) ∈ Q̄
such thatψ(x∗, t∗) < 0 andψ(x∗, t∗) = min(x,t)∈Q̄ ψ(x, t).
Clearly (x∗, t∗) /∈ ∂Q. It follows that ψx(x∗, t∗) = 0,
ψx(x∗, t∗) = 0 and ψxx(x∗, t∗) ≥ 0 and this implies that
Lx,tψ(x∗, t∗) > 0, which is a contradiction. Thus
ψ(x∗, t∗)≥ 0. It follows thatψ(x, t)≥ 0, ∀(x, t) ∈ Q̄.

We propose a numerical scheme which we design in
two steps. Firstly the time variable is discretized using the
classical backward Euler method. This leads to a system
of boundary value problems. These problems are, in turn,
discretized in space on a uniform mesh following the
nonstandard methodology of Mickens [12]. We refer to
this scheme as a fitted operator finite difference method
(FOFDM).

After proving that the fitted operator of the fully
discrete problem satisfies a minimum principle, thus

replicating this property of the continuous operatorLx,t ,
we establish its uniform stability in the maximum norm.
Then we show that the proposed FOFDM is uniformly
convergent with respect to the perturbation parametersε
andµ . This is in contradiction with the claim which was
made in [28] and relayed in [9], [22] that
parameter-uniform numerical methods cannot be
designed on a uniform mesh for problems whose solution
exhibits parabolic layers.

Finally we provide numerical results to attest the
parameter-uniform convergence. Moreover, comparison
with some existing methods in the literature proves the
competitiveness of the method.

The rest of the paper is organised as follows. Section
2 is devoted to temporal discretization. We present the
local and global error estimates. Spatial discretization is
the subject of Section 3. We prove that the fitted operator
satisfies a minimum principle. We use this fact to
establish a stability result. In section 4, we show that the
method is uniformly convergent with respect to the
perturbation parameters. Numerical results confirming
our findings are provided in Section 5. We also test the
method for accuracy in comparison with some existing
methods. Finally, some conclusions are drawn in Section
6.

2 Temporal discretization

We use the implicit Euler method to discretize the time
variable with a uniform step sizeτ, so that the time interval
[0,T] is partitioned as

ω̄K = {tk = kτ, 0≤ k≤ K, τ = T/K}. (2.4)

We obtain the following linear system in space at each time
level

Lxz≡ εzxx(x, tk)+ µa(x)zx(x, tk)−

(

b(x)+
1
τ

)

z(x, tk)

= f (x, tk)−
1
τ

z(x, tk−1), (2.5)

subject to the conditions

z(x,0) = u0, ∀x∈ (0,1); z(0, tk) = z(1, tk) = 0. (2.6)

The local truncation error of the time discretization (2.5)
is defined byek = u(x, tk)− ẑ(x, tk), where ẑ(x, tk) is the
solution of the two-point boundary value problem

εzxx(x, tk)+ µa(x)zx(x, tk)−

(

b(x)+
1
τ

)

z(x, tk)

= f (x, tk)−
1
τ

u(x, tk−1), (2.7)

along withz(0, tk) = z(1, tk) = 0. The global error at time
level tk, which we denote byEk, is the sum of all local
errors anterior and up to time leveltk:

Ek =
k

∑
l=0

el , k≤ T/τ.
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We now state results for the bounds on these errors.
Readers are referred to [2] for a proof.

Lemma 21(Local error estimate)The local error estimate
of the time discretization is given by

||ek||∞ ≤ Mτ2, 1≤ k≤ K. (2.8)

In the lemma above and in the rest of the paper,M
represents a generic constant which is independent of the
parametersε and µ as well as of the time and space
discretization parameters and which may assume
differents values in equations or inequalities where it is
involved.

Lemma 22(Global error estimate)The global error
estimate of the time discretization is given by

||Ek||∞ ≤Cτ. (2.9)

Proof. See [18].
For the sake of simplicity, we ignore the second

argument of the functionzas, in fact,z is a function of the
single variablex. The differential operatorLx in boundary
value problems (2.5)-(2.6) satisfies the following discrete
minimum principle:

Lemma 23(Continuous Minimum Principle II)If ξ (x) is
any sufficiently smooth function satisfyingξ (0) ≥ 0,
ξ (1) ≥ 0 and Lxξ (x) ≤ 0 for all x ∈ Ω . Thenξ (x) ≥ 0,
for all x ∈ Ω̄ .

Proof. See the proof of Lemma11 and ignore the time
variable.

The convergence analysis of the numerical scheme
which we propose requires that we use some bounds on
the solution and its derivatives. The solutionsλ0(x) < 0
andλ1(x)> 0 of the charateristic equation

ελ 2(x)+ µa(x)λ (x)−
(

b(x)+
1
τ

)

= 0 (2.10)

are used to describe the boundary layers atx= 0 andx= 1,
respectively. The following Lemma was proved in [9].

Lemma 24For any p∈ (0,1) we have, up to a certain
order q that depends on the smoothness of the functions
a(x), b(x) and f(x, t),

∣

∣

∣

∣

d jz
dxj

∣

∣

∣

∣

≤C
(

1+ µ j
0e−pµ0x+ µ j

1e−pµ1(1−x)
)

, (2.11)

for 0≤ j ≤ q.

The quantitiesµ0 andµ1 are defined asµ0 = −max
[0,1]

λ0(x)

andµ1 = min
[0,1]

λ1(x).

Remark 25It is to be noted that, ifµ2 << ε i.e µ2/ε → 0
asε → 0, thenµ0 ≈ µ1 ≈ min

√

(b(x)+1/τ)ε−1 and we
have boundary layers at x= 0 and x= 1. The situation
of one external layer (at x= 0) is encountered in the case
whereε << µ2 i.eε/µ2 → 0 asµ → 0. In this case,µ1 ≈0

andµ0 ≈ min
x∈[0,1]

µa(x)
ε

.

3 The fully discrete problem

Let Ω̄N denote the following partition of[0,1] into N
subintervals such that

x0 = 0, xi = x0+ ih, i = 1(1)n, h= xi − xi−1,xN = 1,

Q̄N,K = Ω̄N × ω̄K be the grid for thex, t-variables, and
QN,K = Q̄N,K ∩ Q. With reference to the nonstandard
finite difference (NSFD) methodology of Mickens [12],
we construct the following scheme to solve (2.7) along
with suitable boundary conditions.

LN,K
ε U(x j , tk) ≡ ε

U(x j+1, tk)−2U(x j , tk)+U(x j−1, tk)

φ2
j

+µa(x j)
U(x j+1, tk)−U(x j , tk)

h

−

(

b(x j)+
1
τ

)

U(x j , tk)

= f (x j , tk)−
1
τ

U(x j , tk−1) (3.12)

subject to the discrete initial and boundary conditions

U(x j ,0) = u0(x j), x j ∈ Ω̄N;

U(0, tk) = U(1, tk) = 0, tk ∈ ω̄K . (3.13)

The denominator functionφ2
j is given by

φ2
j (h,ε,µ)≡ φ2

j =
hε

µa(x j)

(

exp

(

µa(x j)h
ε

)

−1

)

.

(3.14)
The scheme above results in a system of linear equations

AU = F. (3.15)

The entries of the tridiagonal matrixA and column-vector
F are

Ai j = r−j , i = j +1; j = 1(1)(n−2), (3.16)

Ai j = rc
j , i = j; j = 1(1)(n−1), (3.17)

Ai j = r+j , i = j −1; j = 12(1)(n−1), (3.18)

Fj = f (x j , tk)−
1
τ

U(x j , t
k−1); j = 1(1)(n−1), (3.19)

where

r−j =
ε

φ2
j

, rc
j =−

(

2ε
φ2

j

+
µa(x j)

h
+

(

b(x j)+
1
τ

)

)

,

r+j =
ε

φ2
j

+
µa(x j)

h
. (3.20)

The scheme (3.12)-(3.14) is a fitted operator finite
difference method (FOFDM) to solve (1.1)-(1.3) . It is an
extension of the method presented in [23] to the class of
two-parameter time-dependent singularly perturbed
problems (1.1)-(1.3).

We adopt the notationwk
j = w(x j , tk) for ease of

exposition in the rest of the paper.
The discrete operator of the scheme (3.12)-(3.13)

safisfies the following minimum principle.
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Lemma 31(Discrete minimum principle)Assume that
LN,K is the discrete operator given in (3.12) andΨk

j is any
mesh function satisfying
Ψ0

j ≥ 0, 0 ≤ j ≤ N,Ψk
0 ≥ 0, Ψk

N ≥ 0, 0 ≤ k ≤ K. If

LN,KΨk
j ≥ 0 in QK

N, thenΨk
j ≥ 0 in Q̄k

j .

Proof. Let s and l be indices sucht thatΨ l
s = min

( j ,k)
Ψk

j , for

Ψk
j ∈ Q̄N,K . Assume thatΨ l

s < 0. It is easy to see that
(s, l) ∈ {1,2, · · · ,N} × {1,2, · · · ,K}, because otherwise
Ψ l

s ≥ 0. It follows thatΨ l
s+1−Ψ l

s > 0 andΨ l
s−1−Ψ l

s > 0.
Thus,LN,KΨ l

s < 0, which is a contradiction. Therefore
Ψ l

s ≥ 0. The indicess and l being arbitrary, we obtain
Ψk

j ≥ 0 in Q̄k
j .

In the next section, we analyze the proposed method
for convergence. In the analysis, we will evoke the
following stability result.

Lemma 32(Uniform stability estimate)At any time level
tk, if Zk

j is any mesh function such that Zk
0 = Zk

N = 0, then

|Zk
i | ≤

1
α

max
1≤ j≤N−1

|LN,KZk
j |, for 0< i < N. (3.21)

In other words, the operator LN,K is uniformly stable.

Proof. Let (Ψ±)k
j be the mesh function defined by

(Ψ±)k
j = P±Zk

j

where

P=
1
β

max
1≤ j≤N−1

|LN,KZk
j |.

We have(Ψ±)k
0 = (Ψ±)k

N = P≥ 0. Moreover, for 1≤ j ≤
N−1, we have

LN,K(Ψ±)k
j = −

(b j +1/τ)
β

max
1≤ j≤N−1

|LN,KZk
j |±LN,KZk

j .

Using the fact that 0< β ≤ b j < b j + 1/τ, we have
LN,K(Ψ±)k

j ≤ 0. By the discrete minimum principle
above, we obtain

(Ψ±)k
j ≥ 0, for 0≤ j ≤ N

and this ends the proof.

4 Convergence analysis

The following analysis concerns the space variablex. We
will thus drop the time level indices (for now) for the sake
of simplicity. The local truncation error of FOFDM (3.12)-
(3.13) is

LN,K(U j − zj) = (Lx−LN,K)zj

= εz′′j + µa jz
′
j

−ε
zj+1−2zj+zj−1

φ2
j

−µa j
zj+1−zj

h
(4.22)

Using Taylor series expansions and taking into account the
truncated Taylor expansion

1

φ2
j

=
1
h2 −

µa j

2εh
+

µ2a2
j

12ε2 , (4.23)

we obtain

LN,K(U j−zj)=

(

−
µa jh

2
+

µa jh2

2ε
−

µ2a2
j h

2

12ε

)

z′′j −
µa jh2

6
z′′′j

+

(

µa jh4

48ε
−

ε2

24
−

µ2a2
j h

4

288ε

)

×
(

z(iv)(ξ1)+ z(iv)(ξ2)
)

−
µa jh2

24
z(iv)(ξ3) (4.24)

whereξi ∈ (x j ,x j+1), i ∈ {1,3} andξ2 ∈ (x j−1,x j). Using
bounds on derivatives ofz (Lemma24), the fact that for
smallh, h4 < h3 < h2 < h and noticing that ( see [14] for
a proof) bothµ l

0exp(−pµ0x j) andµ l
1exp(−pµ1(1− x j))

approach zero asε → 0 for all l ∈ {0,1,2, · · ·}, we obtain

|LN,K(U j − zj)| ≤ Mh. (4.25)

Now, invoking the uniform stability estimate (Lemma32)
yields

max
0≤ j≤N

|Uk
j − zk

j | ≤ Mh. (4.26)

Note that we have re-instate the dropped time level index.
Since by Lemma22 we have max

0≤k≤K
|zk

j −uk
j | ≤ Mτ , we

obtain the main and final result of this work.

Theorem 41Let u(x, t) be the solution of (1.1)-(1.3) and
U(x j , tk) its numerical approximation obtained via(3.12)-
(3.14). Then there exists a constant M independent ofε, µ ,
τ and h such that

max
0≤ j≤N,0≤k≤K

|Uk
j −uk

j | ≤ M(h+ τ). (4.27)

This result indicates that the numerical method developed
in this work is first order convergent, independently of the
parametersε andµ . In the next section, we test this method
and compare the numerical results obtained with the works
in [9], [22].

5 Numerical results

The maximum errors at all the mesh points are evaluated
using the formula

EN,K
ε,µ = max

0≤ j≤N;0≤k≤K

∣

∣

∣
(UN,K

ε,µ ) j ,k− (uN,K
ε,µ ) j ,k

∣

∣

∣
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if the exact solutionu(x, t) is available. However, since the
exact solution for Example51below is not known, we use
a variant of the double mesh principle

EN,K
ε,µ = max

0≤ j≤N;0≤k≤K

∣

∣

∣
(UN,K

ε,µ ) j ,k− (U2N,2K
ε,µ )2 j ,2k

∣

∣

∣
.

In the above,(uN,K
ε,µ ) j ,k and (UN,K

ε,µ ) j ,k are the exact and
approximate solutions obtained using a constant time step
τ and space steph. Likewise, (U2N,2K

ε,µ )2 j ,2k is computed
using the constant time stepτ/2 and space steph/2. Also,
we compute the numerical rates of convergence as
follows [4]:

r l ≡ rε,µ,l := log2(E
Nl ,Kl
ε,µ /E2Nl ,2Kl

ε,µ ), l = 1,2, · · · .

Example 51We consider problem

ε
∂ 2u
∂x2 + µ(1+ x)

∂u
∂x

− u(x)−
∂u
∂ t

= 16x2(1− x)2,

(x, t) ∈ (0,1)× (0,1]

u(x,0) = 0, x∈ Ω̄ ,

u(0, t) = 0, u(1, t) = 0, t ∈ [0,1].

In Fig. 1 we plot the profile of the numerical solution
obtained via the proposed FOFDM forN = 128,K = 64
and various values ofε and µ . We note the very high
gradients nearx= 0 for ε = 2−40 andµ = 1.

The maximum pointwise errors of our method when
implemented on the example given above are provided in
tables1 and3 for µ = 2−2 andµ = 2−10. We see that, for
fixed h and τ, the maximum error is constant asε
approaches zero. This confirms that the method
implemented isε-uniformly convergent. Theµ-uniform
convergence is shown in Table5 where for fixedε, h and
τ, the maximum error is constant asµ tends to zero.
Tables2, 4 and6 give the the orders of local convergence.

A comparison of results in tables2 and4 with those in
tables 1 and 2 of [22] suggests that our method converges
faster than the one presented in that work. Similar
comparative data can be drawn for the method in [9]
including with respect to accuracy since the maximum
error produced by our method is much smaller (see Table
7).

6 Conclusion

We treated a class of singularly perturbed parabolic
differential equations with two small parameters affecting
the derivatives. A temporal discretization by means of the
classical backward Euler method and spatial
discretization on a uniform mesh following the
nonstandard methodology of Mickens led to a fully
discrete problem whose underlying operator safisfied a
minimum principle. A convergence analysis based on this
fact showed that the proposed method is robust with
respect to the perturbation parameters in the sense that the

Table 1: The maximum pointwise errors forµ = 2−2 for various
values ofε andN(= K)

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512
20 8.12E-3 4.39E-3 2.32E-3 1.22E-3 6.24E-4 3.16E-4 1.59E-4

2−2 1.72E-2 7.10E-3 3.11E-3 1.44E-3 6.89E-4 3.37E-4 1.67E-4
2−4 3.01E-2 1.16E-2 4.50E-3 1.90E-3 8.66E-4 4.12E-4 2.01E-4
2−6 5.11E-2 1.95E-2 7.29E-3 2.91E-3 1.27E-3 5.89E-4 2.84E-4
2−8 6.26E-2 3.21E-2 1.31E-2 4.91E-3 1.92E-3 8.19E-4 3.75E-4
2−10 6.28E-2 3.43E-2 1.75E-2 8.20E-3 3.28E-3 1.24E-3 4.99E-4
2−12 6.28E-2 3.43E-2 1.76E-2 8.85E-3 4.40E-3 2.04E-3 8.18E-4
2−14 6.28E-2 3.43E-2 1.76E-2 8.85E-3 4.42E-3 2.20E-3 1.10E-3

...
...

...
...

...
...

...
...

2−40 6.28E-2 3.43E-2 1.76E-2 8.85E-3 4.42E-3 2.20E-3 1.10E-3

Table 2: The orders of convergence forµ = 2−2 for various
values ofε andN(= K)

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512
20 0.88 0.92 0.93 0.96 0.98 0.99 0.99

2−2 1.28 1.19 1.11 1.06 1.03 1.02 1.01
2−4 1.38 1.36 1.24 1.14 1.07 1.04 1.02
2−6 1.39 1.42 1.33 1.20 1.10 1.05 1.03
2−8 0.97 1.29 1.42 1.35 1.23 1.13 1.06
2−10 0.87 0.97 1.09 1.32 1.40 1.31 1.19
2−12 0.87 0.97 0.99 1.01 1.11 1.32 1.40
2−14 0.87 0.97 0.99 1.00 1.00 1.01 1.00

...
...

...
...

...
...

...
...

2−40 0.87 0.97 0.99 1.00 1.00 1.00 1.00

Table 3: The maximum pointwise errors forµ = 2−10 for various
values ofε andN(= K)

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512
20 8.13E-3 4.41E-3 2.32E-3 1.21E-3 6.22E-4 3.16E-4 1.59E-4

2−2 1.77E-2 7.18E-3 3.09E-3 1.41E-3 6.75E-4 3.29E-4 1.63E-4
2−4 3.34E-2 1.17E-2 4.24E-3 1.72E-3 7.58E-4 3.55E-4 1.71E-4
2−6 4.63E-2 1.63E-2 5.65E-3 2.11E-3 8.78E-4 3.96E-4 1.87E-4
2−8 5.24E-2 1.84E-2 6.24E-3 2.29E-3 9.33E-4 4.12E-4 1.93E-4
2−10 5.42E-2 1.89E-2 6.38E-3 2.33E-3 9.43E-4 4.15E-4 1.94E-4
2−12 5.46E-2 1.90E-2 6.41E-3 2.34E-3 9.45E-4 4.16E-4 1.94E-4
2−14 5.48E-2 1.91E-2 6.43E-3 2.34E-3 9.46E-4 4.16E-4 1.94E-4
2−16 5.49E-2 1.91E-2 6.45E-3 2.35E-3 9.48E-4 4.17E-4 1.94E-4
2−18 5.49E-2 1.92E-2 6.47E-3 2.36E-3 9.53E-4 4.18E-4 1.94E-4
2−20 5.49E-2 1.92E-2 6.47E-3 2.36E-3 9.58E-4 4.22E-4 1.96E-4
2−22 5.49E-2 1.92E-2 6.47E-3 2.36E-3 9.58E-4 4.22E-4 1.97E-4

...
...

...
...

...
...

...
...

2−40 5.49E-2 1.92E-2 6.47E-3 2.36E-3 9.58E-4 4.22E-4 1.97E-4

Table 4: The orders of convergence forµ = 2−10 for various
values ofε andN(= K)

ε N = 8 N = 16 N = 32 N = 64 N = 128 N = 256 N = 512
20 0.88 0.93 0.93 0.96 0.98 0.99 0.99

2−2 1.30 1.22 1.13 1.07 1.04 1.02 1.01
2−4 1.51 1.46 1.31 1.18 1.10 1.05 1.03
2−6 1.51 1.53 1.42 1.27 1.15 1.08 1.04
2−8 1.51 1.56 1.44 1.30 1.18 1.10 1.05
2−10 1.52 1.57 1.45 1.30 1.18 1.10 1.05
2−12 1.52 1.57 1.46 1.31 1.18 1.10 1.05
2−14 1.52 1.57 1.46 1.31 1.18 1.10 1.05
2−16 1.52 1.57 1.46 1.31 1.19 1.10 1.05
2−18 1.52 1.57 1.45 1.31 1.19 1.11 1.06
2−20 1.52 1.57 1.45 1.30 1.18 1.11 1.06
2−22 1.52 1.57 1.45 1.30 1.18 1.10 1.06

...
...

...
...

...
...

...
...

2−40 1.52 1.57 1.45 1.30 1.18 1.10 1.06
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Fig. 1: Solution profile of Example51 via the proposed scheme
for N = 128,K = 64 and various values ofε andµ.

Table 5: The maximum pointwise errorsε = 2−5 for various
values ofµ andN(= 2K)

µ N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
20 1.15E-2 6.33E-3 3.38E-3 1.76E-3 9.02E-4 4.57E-4

2−2 8.63E-3 3.95E-3 1.88E-3 9.20E-4 4.54E-4 2.26E-4
2−4 7.52E-3 3.29E-3 1.53E-3 7.35E-4 3.61E-4 1.78E-4
2−6 7.44E-3 3.23E-3 1.49E-3 7.18E-4 3.51E-4 1.74E-4
2−8 7.43E-3 3.23E-3 1.49E-3 7.16E-4 3.51E-4 1.73E-4
2−10 7.43E-3 3.22E-3 1.49E-3 7.16E-4 3.50E-4 1.73E-4

...
...

...
...

...
...

...
2−40 7.43E-3 3.22E-3 1.49E-3 7.16E-4 3.50E-4 1.73E-4

Table 6: The orders of convergence forε = 2−5 for various
values ofµ andN(= 2K)

µ N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
20 0.86 0.90 0.94 0.97 0.98 0.99

2−2 1.13 1.07 1.03 1.02 1.01 1.00
2−4 1.19 1.11 1.06 1.03 1.01 1.01
2−6 1.20 1.11 1.06 1.03 1.02 1.01
2−8 1.20 1.11 1.06 1.03 1.02 1.01
2−10 1.20 1.11 1.06 1.03 1.02 1.01

...
...

...
...

...
...

...
2−40 1.20 1.11 1.06 1.03 1.02 1.01

method converges uniformly independently of the
parameters. We have therefore challenged the current
understanding that parameter-uniform numerical methods
cannot be designed on a uniform mesh for problems
whose solution has parabolic layers [28]. We tested the
proposed method on a numerical example to attest the
parameter-uniform convergence. We also compared our
method with some existing methods in the literature.

Table 7: Comparison of numerical results via the proposed
scheme and the scheme in [9]

Scheme N = 128 N = 256 N = 512 N = 1024
Maximum Proposed scheme 1.49E-03 7.16E-04 3.50E-04 1.73E-04

errors Scheme in [9] 3.09E-03 1.86E-03 1.02E-03 5.37E-03
Orders of Proposed scheme 1.06 1.03 1.02

Convergence Scheme in [9] 0.73 0.86 0.93
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