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Abstract: In this paper, failure step stress-partially accelerated life tests (FSS-PALT) are considered when the lifetime of a product
follows a generalized inverted Rayleigh distribution (GIRD). Based on Type II censoring, the maximum likelihood estimates (MLEs)
of model parameters are obtained. Also, the asymptotic variances and covariances matrix of the estimators is studied. The optimum
proportion of test units failing at normal and accelerate condition according to a certain optimality criterion in optimum test plans are
discussed. The performance of the estimators are compared through Monte Carlo simulation study. Finally, numerical examples and
concluding remarks are provided.
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1 Introduction

Accelerated life test is often used for reliability
prediction. Accelerated life testing is achieved by
subjecting the test units to conditions that are more severe
than the normal ones, such as higher levels of
temperature, voltage, pressure, vibration, load, etc. Items
are tested at high stress levels to induce early failures then
the failure information is related to that at an operational
stress level through a given stress-dependent model.
When such model is unknown, the accelerated life test
cannot be conducted and instead the PALT become
suitable. The PALT combines both ordinary and
accelerated life tests. The aim of such testing is to rapid
obtaining data, which yield desired information on
product life or performance under normal use. PALT can
be carried out using constant-stress, step-stress, or
progressive-stress. According to [1], the stress can be
applied in various ways. One way to accelerate failure in
step-stress by increasing the stress applied to the test
product in a specified discrete sequence. The step stress
tests can be divided into two main types which are time
step stress (TSS) and failure step stress (FSS). In TSS
test, a test unit is subjected to successively higher levels
of stress. Thus, the stress is increased step by step at
pre-specified times until the test time terminates or obtain

the pre-determined number of failures. While, in FSS test,
test units start to run at normal stress until the occurrence
of a fixed number of failuresn1. Then, stress on them is
raised until the test time terminates or obtain the
pre-determined number of failures.

In the literature, there are few studies based on failure
step-stress partially accelerated life test (FSS-PALT),
among them [2]. They considered optimum plans for
FSS-PALT with two stress levels assuming Weibull
distribution as a lifetime model. Also, [3] discussed the
optimal design in the case of type II censoring for
inverted Weibull distribution. On the other hand, there are
many authors have studied the time- step stress partially
accelerated life tests TSS-PALT, for example, [4], [5] and
[6]. Also, PALT was studied under type I censoring. For
example, [7] studied the estimation in constant stress
partially accelerated life tests for Rayleigh distribution
using type-I censoring. Recently, [8] concerned on PALT
for the Burr type XII model. Based on type II censoring,
many authors interested in applying the step-stress
method, among them, [9] obtained the MLE and
developed optimum test plans for simple TSS- PALT
under type II censored data for items having Pareto
distribution. Moreover, [10] focused on the maximum
likelihood method for estimating the acceleration factor
and the parameters of Burr type III distribution. [11] and
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[12] discussed the point and interval estimations of
two-parameter Gompertz and Weibull distributions,
respectively, under PALT.

This paper concerns on the estimation and the optimal
design problem for GIRD under FSS- PALT using type II
censored data. The reminder of this paper is organized as
follows. Section 2 the GIRD and test model are discussed.
The maximum likelihood point and interval estimation of
the model parameters are obtained in Section 3. Optimum
test plans for FSS- PALT of GIRD are developed in
Section 4. Simulation study and numerical experimental
are presented in Section 5. Finally, numerical examples
are given in Section 6 and concluding remarks are
presented in section 7.

2 The model and test model

A generalized inverted scale family of distributions was
introduced first by [13]. It is proposed by introducing a
shape parameter to the scale family of distributions.
GIRD is a member of this new family. It is a generalized
version of inverted Rayleigh distribution (IRD). IRD has
many applications in the area of reliability studies. [14]
mentioned that the distribution of lifetimes of several
types of experimental units can be approximated by the
IRD. Many authors interested in IRD among them [15],
[16], [17] and [18]. The GIRD is considered by this
article. This model has not been investigated widely in the
literature. Some inferential procedures of the generalized
inverted scale family considered by [13]. Also, some
characterizations of GIRD discussed by [19].

Let random variableT have a GIRD with parameters
α and λ , whereα is the shape parameter andλ is the
scale parameter. The probability density function (pdf),
cumulative distribution function (cdf) and reliability
functionS(t) of T is given by

f1(t) = 2αλ−2t−3exp
[

−(λ t)−2
]

×
[

1−exp
(

−(λ t)−2
)]α−1

, t > 0, α,λ > 0,

(1)

F1(t) = 1−
(

1−exp
[

−(λ t)−2
])α

, (2)

S1(t) =
(

1−exp
[

−(λ t)−2
])α

. (3)

In FSS- PALT, all ofn units are tested first under normal
condition until they reach the timeYn1, wheren1 = nπ1
such thatπ1 is the proportion of test units to be observed
at normal condition is pre-specified. After timeYn1 the
test units(n− n1) are subjected at accelerated condition
until censoring timeYr is reached, whereYr is the time of
failed r units which is predetermined, wheren1 andr− n1
are the number of items failed at normal conditions and
accelerated conditions, respectively, andnc = n − r the

number of censoring units i.e.nc = nπc such thatπc is the
proportion of test units to be censored. So, in the
experiment of FSS- PALT type II censoring, we
pre-specifiedπ1 andr. This means that if the item has not
failed by some pre-specifiedr units the test is switched to
higher level of stress and it is continued until items fail.
The effect of this switch is to multiply the remaining
lifetime on the item by the inverse of the acceleration
factor β , which is the ratio of the hazard rate at
accelerated condition to that at normal use condition
(β > 1). In this case, switching to the higher stress level
will shorten the life of the test item. Thus the total
lifetime of the test item, denoted byY passes through two
stages, which are the normal and accelerated conditions
see, [11].

The lifetime of the unit in FSS- PALT is given by

Y =

{

t i f t ≤ yn1

yn1 +β−1(t − yn1) i f t > yn1,
(4)

where,t is the lifetime of an item at use condition andβ
is the acceleration factor. This model is called the
tampered random variable (TRV) model. It was proposed
by [5]. Assume that the lifetime of the test item follows
GIRD with shape parameterα and scale parameterλ ,
then, the pdf of total lifetimeY of an item is given by

f (y) =







0 i f y ≤ 0
f1(y) i f 0< y ≤ yn1

f2(y) i f y > yn1

(5)

where f1(y) was given by (1), andf2(y) is given by

f2(y) = 2αβ λ−2 [yn1 +β (y− yn1)]
−3

×exp
[

−(λ [yn1 +β (y− yn1)])
−2
]

×
[

1−exp
(

−(λ [yn1 +β (y− yn1)])
−2
)]α−1

,

y ≥ 0, α, β > 1, λ > 0
(6)

is obtained by the transformation variable technique by
using (1) and (4), Also

F2(y) = 1−
[

1−exp
(

−(λ [yn1 +β (y− yn1)])
−2
)]α

,

(7)
and

S2(y) =
[

1−exp
(

−(λ [yn1 +β (y− yn1)])
−2
)]α

. (8)

3 Maximum Likelihood Estimation

In this Section, the point and interval estimations of the
model parameters are introduced using the maximum
likelihood method as well as Fisher information matrix.
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3.1 Point estimation

In this subsection, the maximum likelihood estimation
based on observed-data likelihood function is used to
estimate the parameters of the GIRD and acceleration
factor for FSS-PALT. The observed data likelihood
function of GIRD in FSS-PALT based on type II
censoring datay1, y2, ..., yn1, yn1+1, ..., yr wheren1 and
r− n1 are the number of items failed at normal conditions
and accelerated conditions respectively. The likelihood
function of these data is given by

L(α,β ,λ |y) ∝

(

n1

∏
i=1

f1(yi)

)(

r

∏
j=n1+1

f2(y j)

)

[S2(yr)]
n−r

.

(9)
By using (1), (6) and (8) in (9) we get

L(α,β ,λ |y) ∝ (αλ−2)rβ r−n1
n1

∏
i=1

y−3
i exp

[

−(λ yi)
−2
]

×
[

1−exp
(

−(λ yi)
−2
)]α−1

×
r

∏
i=n1+1

{

[yn1 +β (yi − yn1)]
−3

×exp
[

−(λ [yn1 +β (yi − yn1)])
−2
]

×
[

1−exp
(

−(λ [yn1 +β (yi − yn1)])
−2
)]α−1

}

×
[

1−exp
(

−(λ [yn1 +β (yr − yn1)])
−2
)]α(n−r)

.

(10)

Therefore, the natural logarithm of the likelihood
function can be written as:

ℓ(α,β ,λ |y) ∝ r logα −2r logλ +(r− n1) logβ
−λ−2ψ1(β )−3ψ2(β )+ (α −1)ψ3(λ ,β )
+α(n− r)ψ4(λ ,β ),

(11)

where

ψ1(β ) =
n1

∑
i=1

y−2
i +

r

∑
i=n1+1

[yn1 +β (yi − yn1)]
−2

, (12)

ψ2(β ) =
n1

∑
i=1

logyi +
r

∑
i=n1+1

log[yn1 +β (yi − yn1)] , (13)

ψ3(λ ,β ) =
n1

∑
i=1

log
[

1−exp
(

−(λ yi)
−2
)]

+
r
∑

i=n1+1
log
[

1−exp
(

−(λ [yn1 +β (yi − yn1)])
−2
)]

(14)
and

ψ4(λ ,β ) = log
[

1−exp
(

−(λ [yn1 +β (yr − yn1)])
−2
)]

.

(15)

Maximum likelihood estimators ofα, β and λ are the
solutions of the system of equations obtained by letting
the first partial derivatives of the total log likelihood with
respect toα, β andλ respectively, to be zero. Hence, the
system of equations is as follows

∂ℓ(α,β ,λ |y)
∂α

=
r
α
+ψ3(λ ,β )+ (n− r)ψ4(λ ,β ) = 0.

(16)
Hence

α̂ =
−r

ψ3(λ ,β )+ (n− r)ψ4(λ ,β )
. (17)

And
∂ℓ(α,β ,λ |y)

∂λ
= 0

hence

−2r
λ +2λ−3ψ1(β )+ (α −1)ψ(λ )

3 (λ ,β )
+α(n− r)ψ(λ )

4 (λ ,β ) = 0,
(18)

Also
∂ℓ(α,β ,λ |y)

∂β
= 0

here

(r−n1)
β −λ−2ψ(β )

1 (β )−3ψ(β )
2 (β )

+(α −1)ψ(β )
3 (λ ,β )+α(n− r)ψ(β )

4 (λ ,β ) = 0,
(19)

where

ψ(q)
N (.) =

∂ψN(.)

∂q
, N = 1, 2, 3, 4,q = {α, β , λ}. (20)

Substituting forα from (17) in (18) and (19), we have
two non-linear equations, then an iterative procedure is
used to solve the non linear equations (18) and (19).
Newton-Raphson method is conducted by using
Mathematica 9. Since the non-linearity ofλ̂ and β̂ , it is
impossible to find their exact marginal or joint
distributions for exact inference. Therefore, the statistical
inferences on the MLEs are based on the asymptotic
distributional result.

3.2 Asymptotic variances and covariances
matrix

The asymptotic variances and covariances of maximum
likelihood estimates are given by the elements of the
inverse of the Fisher information matrix

Ii j(θ ) = E

( −∂ℓ2

∂θi∂θ j

)

. (21)
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Unfortunately, the exact mathematical expressions for the
above expectation are very difficult to obtain. Therefore,
the observed Fisher information matrix is given by

Ii j(θ ) =
−∂ℓ2

∂θi∂θ j
, (22)

which is obtained by dropping the expectation on
operation E see [20]. Whenθ = {α, β , λ}, the observed
Fisher information matrixI (α,β ,λ ), for the MLEs (̂α,

β̂ , and λ̂ ), is the 3×3 symmetric matrix of negative
second partial derivatives of the log-likelihood function
with respect to (α, β , and λ ). In practice , we usually
estimateI−1

0 (α,β ,λ ) by I−1(α̂, β̂ , λ̂ ), given by











− ∂ 2ℓ(α ,β ,λ |y)
∂α2 − ∂ 2ℓ(α ,β ,λ |y)

∂α∂β − ∂ 2ℓ(α ,β ,λ |y)
∂α∂λ

− ∂ 2ℓ(α ,β ,λ |y)
∂β ∂α − ∂ 2ℓ(α ,β ,λ |y)

∂β 2 − ∂ 2ℓ(α ,β ,λ |y)
∂β ∂λ

− ∂ 2ℓ(α ,β ,λ |y)
∂λ ∂α − ∂ 2ℓ(α ,β ,λ |y)

∂λ ∂β − ∂ 2ℓ(α ,β ,λ |y)
∂λ 2











−1

(α̂,β̂ ,λ̂ )

(23)

From the log-likelihood function in (11), we have the
second partial derivatives of the maximum likelihood
function are given as the following:

∂ 2ℓ(α ,β ,λ |y)
∂α2 =− r

α2 , (24)

∂ 2ℓ(α ,β ,λ |y)
∂β 2 = −(r−n1)

β 2 −λ−2ψ(β β )
1 (β )−3ψ(β β )

2 (β )

+(α −1)ψ(β β )
3 (λ ,β )+α(n− r)ψ(β β )

4 (λ ,β ),
(25)

∂ 2ℓ(α ,β ,λ |y)
∂λ 2 = 2r

λ 2 −6λ−4ψ1(β )
+(α −1)ψ(λ λ )

3 (λ ,β )+α(n− r)ψ(λ λ )
4 (λ ,β ),

(26)

∂ 2ℓ(α ,β ,λ |y)
∂α∂β =

∂ 2ℓ(α ,β ,λ |y)
∂β ∂α =ψ(β )

3 (λ ,β )+(n−r)ψ(β )
4 (λ ,β ),

(27)

∂ 2ℓ(α ,β ,λ |y)
∂α∂λ =

∂ 2ℓ(α ,β ,λ |y)
∂λ ∂α =ψ(λ )

3 (λ ,β )+(n−r)ψ(λ )
4 (λ ,β ),

(28)
and

∂ 2ℓ(α ,β ,λ |y)
∂β ∂λ =

∂ 2ℓ(α ,β ,λ |y)
∂λ ∂β = 2λ−3ψ(β )

1 (β )
+(α −1)ψ(λ β )

3 (λ ,β )+α(n− r)ψ(λ β )
4 (λ ,β ).

(29)

where

ψ(pq)
N (.) =

∂ 2ψN(.)

∂ p∂q
, N = 1, 2, 3, 4,p, q = {α, β , λ}.

(30)

Thus, the 100(1-γ)% approximate confidence intervals for
α,β andλ are

α̂ ∓ z γ
2

√
v11, β̂ ∓ z γ

2

√
v22 andλ̂ ∓ z γ

2

√
v33 (31)

respectively, wherev11, v22 and v33 are the elements on
the main diagonal of the covariance matrixI−1

0 (α̂, β̂ , λ̂ )
andz γ

2
is the percentile of the standard normal distribution

with right-tail probability γ
2.

4 Optimum Test Plan

In this section, we consider the problem of optimally
designing of simple FSS-PALT, which terminates at a
pre-specified number of failurer. The optimum criterion
is to find the optimal stress change-number,π∗

1 proportion
of test units that must fail at normal stress such that the
generalized asymptotic variance (GAV) of the MLE of the
model parameters at normal use condition is minimized.
The stress change-timeYn1 is a pre-specified time by the
pre-specified proportionπ1 for the stage of parameter
estimation. But for the optimal design stage of the testπ1,
is considered a switching parameter that to be optimally
determined according to a certain optimally criterion. The
problem that considered was of optimally designing a
FSS-PALT, which terminated at a pre-specified number of
failure. The optimum criterion is to findπ∗

1 such that the
GAV of the MLEs of the model parameters at normal use
condition is minimized. The GAV of the MLEs of the
model parameters is the reciprocal of the determinant of
F see [21].

GAV =
1
|F | (32)

where |F| is determinant of the Fisher’s information
matrix. The minimization of the GAV is equivalent to
maximization of|F|. Therefore, the optimal valueπ∗

1 of
maximized the determinant and minimized the GAV is
reduced to

∂ |F |
∂π1

= 0 (33)

In general, the solution of (33) is not in a closed form and
therefore requires a numerical method such as
Newton-Raphson method. The Newton-Raphson method
was applied to obtain the optimalπ∗

1 which minimize the
GAV. Accordingly, the corresponding optimal numbers of
items failed at normal use condition for switching to
accelerated conditionn∗1 is

n∗1 = nπ∗
1 (34)

where n is the sample size andπ∗
1 is the the optimal

proportion of test units that must fail at normal condition.
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Table 1: The MSE, ARB and RE of the parameters under type II censoring sample.
n (α,λ ,β ), π1 (0.5, 2, 2), 0.5 (2, 2, 1.1), 0.3

MSE ARB RE MSE ARB RE
30 α 0.40049 0.49918 1.26568 1.22803 0.03029 0.55408

λ 0.12806 0.05842 0.17893 0.08165 0.02383 0.14287
β 1.03209 0.01301 0.50796 0.85308 0.41936 0.83966

50 α 0.10434 0.24907 0.64604 1.09826 0.03575 0.52399
λ 0.07889 0.03835 0.14043 0.05181 0.01103 0.11381
β 0.90668 0.03462 0.47610 0.44507 0.26298 0.60649

100 α 0.03720 0.11265 0.38572 0.96612 0.08729 0.49146
λ 0.04159 0.01679 0.10197 0.02928 0.00243 0.08556
β 0.56994 0.02426 0.37747 0.21147 0.11642 0.41805

150 α 0.02435 0.07926 0.31212 0.81798 0.10416 0.45221
λ 0.02884 0.01251 0.08491 0.01933 0.00203 0.06952
β 0.40036 0.00824 0.31637 0.10097 0.05157 0.28887

200 α 0.01320 0.05843 0.22980 0.73297 0.11282 0.42807
λ 0.02054 0.00971 0.07166 0.01666 0.00359 0.06454
β 0.27915 0.01275 0.26417 0.09157 0.03345 0.27509

Table 2: Asymptotic variances and covariances of estimates.
n (α,λ ,β ), π1 (0.5, 2, 2), 0.5 (2, 2, 1.1), 0.3

α̂ λ̂ β̂ α̂ λ̂ β̂
30 α̂ 0.01678 -0.00816 -0.02180 0.09668 -0.01618 -0.02974

λ̂ 0.03884 -0.01776 0.03105 -0.02384
β̂ 0.20310 0.09174

50 α̂ 0.01132 -0.00784 -0.02150 0.08799 -0.01327 -0.02499
λ̂ 0.03275 -0.00407 0.01809 -0.01212
β̂ 0.17905 0.05151

100 α̂ 0.00738 -0.00638 -0.02006 0.06697 -0.00935 -0.01780
λ̂ 0.02208 0.00674 0.00902 -0.00472
β̂ 0.14589 0.02410

150 α̂ 0.00569 -0.00518 -0.01721 0.07268 -0.00973 -0.01946
λ̂ 0.01633 0.00825 0.00636 -0.00208
β̂ 0.11865 0.01789

200 α̂ 0.00520 -0.00491 -0.01815 0.06066 -0.00798 -0.01616
λ̂ 0.01370 0.01124 0.00482 -0.00134
β̂ 0.12093 0.01366

5 Simulation Study

In this section. we adopt some numerical experiments
performed to evaluate the behavior of our proposed
methods for different sample sizes, different parameter
values and different proportionπ1. All of the
computations were performed by (Mathematica 9.0)
using a Pentium IV processor. By considering Type II
censored samples. The performance of the resulting
estimators of the distribution parameters and acceleration
factor has been considered in terms of their mean square
error (MSE), absolute relative bias (ARB) and relative
error (RE), given by

MSE(θ̂ ) = E(θ − θ̂)2, ARB(θ̂ ) = | θ−θ̂
θ |,

and RE=
√

MSE(θ̂)
θ .

(35)

Moreover, Fisher information matrix, the asymptotic
variance and covariance matrix and confidence intervals

of the distribution parameters and acceleration factor are
obtained. Also, optimum test plans are developed
numerically. The optimal GAV of the MLEs of the model
parameters and optimal number of items failed at normal
use condition are computed. In our computation , we used
two sets of parameter(α, λ , β ) = {(0.5, 2, 2), (2, 2,
1.1)}, sample of sizes 30, 50(50)200, proportion of test
units failing at normal conditionπ1 = {0.5, 0.3} and the
effects sample sizer = 75% of complete sample. The
steps of simulation procedure can be described as follows:

Step 1.Generate a random sample of sizesn from GIRD (1),
(t1, t2, ..., tn) using the transformation

T =
1

λ
√

log
[

1− (1−U)
1
α
]−1

,

whereU has a uniform (0, 1) random number.
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Table 3. Confidence bounds of the estimates and the width of the intervals at confidence level 0.90.
n (α,λ ,β ) (0.5, 2, 2) (2, 2, 1.1)

LCB UCB Width LCB UCB Width
30 α 0.53713 0.96204 0.42490 1.42949 2.44937 1.01988

λ 1.55993 2.20639 0.64646 1.75863 2.33669 0.57805
β 1.28692 2.76513 1.47821 1.06455 2.05805 0.99349

50 α 0.45000 0.79906 0.34906 1.58501 2.55798 0.97296
λ 1.62648 2.22014 0.59366 1.80143 2.24270 0.44127
β 1.37528 2.76321 1.38793 1.01703 1.76152 0.74448

100 α 0.41537 0.69727 0.28190 1.75017 2.59901 0.84883
λ 1.72271 2.21014 0.48743 1.84902 2.16069 0.31166
β 1.42210 2.67493 1.25284 0.97344 1.48267 0.50921

150 α 0.41582 0.66343 0.24760 1.76619 2.65045 0.88426
λ 1.76541 2.18457 0.41916 1.86507 2.12679 0.26172
β 1.45156 2.58139 1.12983 0.93737 1.37608 0.438711

200 α 0.41093 0.64749 0.23656 1.82171 2.62959 0.80787
λ 1.78857 2.17260 0.38403 1.87894 2.10669 0.22774
β 1.45518 2.59581 1.14063 0.94509 1.32851 0.38341

Table 4. The results of optimal design of FFS- PALT under type II censoring.
(α,λ ,β ) (0.5, 2, 2) (2, 2, 1.1)

n π∗
1 n∗1 GAV π∗

1 n∗1 GAV
30 0.22049 7 6.64349 x 10-4 0.13055 4 6.4842 x 10-4
50 0.26666 13 2.48517 x 10-4 0.12676 6 2.00057 x 10-4
100 0.34947 35 5.86175 x 10-5 0.15960 16 6.26542 x 10-5
150 0.27109 41 1.01820 x 10-5 0.18906 28 9.86235 x 10-6
200 0.28969 58 2.44024 x 10-6 0.15030 30 4.49904 x 10-6

Step 2.After ordering the sample and for givenπ1 choose
yn1 = t(n1), using equation (4) we have Type II
censored samplesy1, y2, ..., yn1, yn1+1, ..., yr.

Step 3.Based on the original Type II censored samplesy1, y2,
..., yn1, yn1+1, ..., yr, obtain the point estimate of
parametersα, β and λ say α̂ , β̂ , and λ̂ from (17),
(18) and (19) and interval estimation from (31).

Step 4.Repeating steps from 1 to 3, 1000 times.
Step 5.The MSE, ARB and RE of the estimators for the

distribution parameters and the acceleration factor for
all sample sizes and for the two sets of parameters
computed from (35) and the results are presented in
Table 1.

Step 6.The asymptotic variance and covariance matrix of the
estimators for different sample sizes are presented in
Table 2.

Step 7.The confidence limit with confidence levelγ = 90 of
the distribution parameters and the acceleration factor
are presented in Table 3.

Step 8.The optimal proportion of unitsπ∗
1 that must fail at

normal condition was obtained by using (33) are
presented in Table 4.

6 Numerical examples

Table 4 shows that the values of the optimal proportion of
units are in the range from 0.1 to 0.4, which means that
less than half observations will fail under the normal

conditions, while the others will fail at high condition.
For instance, in the first set of parameters when n = 100,
35 observations will fail under use condition, 40 will fail
under accelerated conditions and 25 will be censored.
Also, in the second set of parameters when n = 200, 30
observations will fail under use condition, 120 will fail
under accelerated conditions and 50 will be censored.
These examples illustrate that the partial accelerating is
very important to run the test.

7 Conclusion

One of the major reasons of using ALT are some of
products having a high reliability, the test of product life
under normal use often requires a long period of time. So
PALT is used to facilitate estimating the reliability of the
unit in a short period of time. In ALT test items are run
only at accelerated conditions, while in PALT they are run
at both normal and accelerated conditions. One way to
accelerate failure is FSS-PALT, test units start to run at a
design (normal) stress until the occurrence of a fixed
number of failures. Then, stress on them is raised and
fixed over a specified time to obtain the predetermined
number of failures. In this study GIRD with FSS- PALT
based on type II censoring was considered. The
performance of the resulting estimators of the distribution
parameters and acceleration factor has been considered in
terms of their MSE, ARB and RE. It can be shown from
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the results that displayed in Tables 1-4 the following
observations:

1.For the second set of parameters the maximum
likelihood estimates ofλ based on MSEs, ARB are
better than the first set of parameters. On the other
hand, the MLEs ofα for the first set of parameters
performs better than the corresponding of the second
set based on MSE, ARB and RE (see Table 1).

2.As the sample size increases the MSE, ARB and RE of
the estimated parameters and accelerating factor
decrease (see Table 1). On the other hand, it is noted
that the behavior of the ARB ofα for the second set is
the worst, but the ARB ofβ for the first set is the
worst.

3.The asymptotic variances and the absolute value of the
asymptotic covariances of the estimates usually
decrease as the sample size increase. Also, the
asymptotic variances of the estimates ofλ andβ for
the second set of parameters are smaller than the
corresponding for the first set. But the asymptotic
variance of the estimates ofα for the first set of
parameters are smaller than the corresponding for the
second set (see Table 2).

4.The width of the interval of the estimates decreases when
the sample size increases (see Table 3). By comparing
the two sets of parameters, the width of the intervals
of the estimates ofλ andβ for the second set smaller
than the corresponding for the first set. But the width
of the intervals of the estimates ofα for the first set
smaller than the corresponding for the second set.

5.The GAV decreases as sample size increase, for both sets
(see Table 4).

From the previous discussion, it can be said that the
two sets of parameters have good statistical properties,
but the second one performs better for all sample sizes.
Maximum likelihood estimates are consistent and
asymptotically normally distributed for the parameters
and accelerating factor. As the sample size increases the
asymptotic variance and covariance of estimators
decrease. Regarding the interval of the estimators, it can
be noted that as sample size increases the width of the
interval of the estimators decreases for the confidence
level and for both sets.
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