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Abstract: In this paper, we have considered the nonlinear coupled boundary-layer equations that describe the problem of injection or
extraction of fluid along the surface of an inclined wall embedded in a saturated porous medium. We obtain very accurate approximate
analytic solutions in closed-form by a direct method for thespecial casesλ = 0 andλ = 1. Furthermore, an accurate analytic series
solution is obtained by the modified Adomian decomposition method for the two limiting cases of free and forced convection by setting
Rak
Pex

= 0 andRak
Pex

6= 0, respectively.
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1 Introduction

Mixed convection flow in porous media has become one
of the most important topics in the theory of heat transfer
in the last few decades, and has attracted a great deal of
interest from researchers in different areas of science,
technology and engineering. The main reason for this
interest is the diverse, important applications of the
subject. Some of the applications are: nuclear waste
disposal, electronic cooling, food processing, thermal
insulation industries, oil recovery, and many more
industrial applications that can be modeled as transport
phenomena in porous media. Wooding (1963) was a
pioneer in attempting to solve the governing equations of
fluid flow and heat transfer in porous media using certain
boundary-layer assumptions. Wooding [1], Prats [2] and
Sutton [3] investigated free convection in porous media.
Haajizadeh and Tien [4] obtained several analytical and
numerical results on mixed convection in a horizontal
plate. Kwendakwema and Boehm [5] obtained numerical
results for mixed convection about a vertical concentric
cylinder. Lai, Prasad and Kulacki [6] investigated the
problem for mixed convection in a vertical porous layer,
and obtained numerical results. Details about the

literature concerning this topic including a summary of
the numerical and experimental results can be found in
the book by Pop and Ingham [7] and also by Nield and
Bejan [8]. The first buoyancy convective problem that had
been studied is the free convection boundary-layer flow
over a vertical flat plate. Stewartson (1958) and Gill
(1965) were the first to provide a description of the
boundary-layer flow over a horizontal surface. Jones
(1973) was the first to study free convection
boundary-layer flow near a flat surface. It is worth noting
that the study of the convective problem over vertical
surfaces has attracted growing attention in the research
literature, while rather less attention has been devoted to
convection over inclined surfaces.
Mixed convection flows are characterized by the
buoyancy parameterk = Rak

Pex
, whereRak is the Rayleigh

number, whilePex is the Peclet number. The parameterk
measures the effect of the free convection when compared
to the forced convection on the fluid flow. The casek > 0
corresponds to a heated plate (assisting the forced flow,
while k < 0 corresponds to a cooled plate (opposing the
flow). Whenk → 0, it means that the forced convection
dominates the transport of heat, and whenk → ∞ the free
convection dominates the transport. It turns out that the
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mixed convection occurs when the buoyancy parameter is
bounded from above and from below by certain
quantities, saykmax and kmin such thatkmin ≤ k ≤ kmax.

When the natural buoyancy forces support the forced
flow, it will enhance the surface heat transfer. For details
about this subject, we refer the reader to [7] and [8].
The governing nonlinear coupled boundary-layer
equations are given in [9]- [10] as a system of two
coupled nonlinear differential equations

f ′′ =±Rak

Pex
θ ′
, (1)

θ ′′+
λ +1

2
f θ ′−λ f ′θ = 0, (2)

subject to the boundary conditions

f (0) = fw, f ′(∞) = 1 (3)

and
θ (0) = 1, θ (∞) = 0, (4)

where fw is the extraction or injection parameter. Positive
values (fw > 0) determine flows with extraction,fw < 0
represents flows with injection, and the zero value
( fw = 0) corresponds to flow along an impermeable wall
with zero mass transfer whereλ is a constant.
The derivation of Eq. (1)-Eq. (4) when the permeability
Ω → ∞ and the heat source/sink parameterγ = 0 can be
also found in [11]-[12], and other related problems in
[13].
Numerical integration using the fourth-order Runge-Kutta
method and the shooting technique have previously been
proposed to solve this problem for the three special cases
of λ = 0, which corresponds to a uniform free stream
flowing along an isothermal vertical wall with the
injection rate varying with x−

1
2 , λ = 1, which

corresponds to the stagnation flow normal to a vertical
wall with linear temperature variation and a constant
injection / extraction rate andλ = 1

3, which corresponds
to a free stream flowing over an inclined wall (α = 450)
having constant heat flux where the injection rate varying

with x−
1
3 , whereα is the angle of inclination [9]-[10].

The limiting cases of free and forced convection are also
presented in [1] and [2].
It may, however, be worthwhile if the physical models can
be constructed in such a manner that the coupled system
can either be solved analytically or transformed into
another system in which the equations are decoupled and
solved separately.
The purpose of this work is to present a new technique for
solving the above system. We propose an algorithm
consisting of two steps that will introduce a preliminary
exact closed-form solution to the system, followed by a
correction to that solution. Approximate analytic
solutions are obtained by a direct method for the special
cases ofλ = 0 and λ = 1. Also, an accurate analytic
series solution is obtained by the modified Adomian

decomposition method [17]-[38]. Both of these
techniques lead to very accurate approximate solutions.

2 Approximate analytic solutions

The system (1)-(4) can be transformed into another
equivalent system in which the equations are decoupled
and combined into one equation. Indeed, integrating Eq.
(1) from 0 to η and taking into account the boundary
conditions at infinityf ′(∞) = 1 andθ (∞) = 0, we obtain

f ′ =±Rak

Pex
θ +1. (5)

The substitution of Eq. (5) into Eq. (2) gives

f ′′′+
λ +1

2
f f ′′−λ ( f ′)2+λ f ′ = 0. (6)

Listed below are several special cases when the
third-order nonlinear equation Eq. (6) subject to the
boundary conditions (3) is solvable by the proposed direct
method.

2.1 Case 1: λ = 1

Assuming that the exact solution of Eq. (6), whereλ is
chosen as 1, is in the form

f (η) = α +β e−η
, (7)

where α and β are two nonzero parameters to be
determined. This proposed assumption was built on the
fact that the vast majority of the obtained solutions are
derived in exponential forms. Because we have assumed
that Eq. (7) satisfies Eq. (6), then upon substitution and
solving the resulting equation, we obtainα = 2.
Using the initial condition f (0) = fw, we obtain
β = fw −2.
By substituting the calculated values ofα andβ into Eq.
(7 ), we immediately find that

f (η) = 2+( fw −2)e−η
, (8)

which is indeed the preliminary exact closed-form
solution of Eq. (6). However, this solution does not satisfy
the boundary condition at infinityf ′(∞) = 1. In view of
this development, we will employ this boundary condition
together with Eq. (8) to achieve the second goal of our
proposed technique by making a correction to our
preliminary exact closed-form solution.
Inserting the obtained solution Eq. (8) and its derivative

f ′(η) =−( fw −2)e−η (9)

into Eq. (6), we obtain

f ′′′+[2+( fw−2)e−η ] f ′′ = ( fw −2)2e−2η +( fw−2)e−η
.

(10)
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Substitutingf ′′ = g into Eq. (10), we obtain

g′+[2+( fw−2)e−η ]g = ( fw −2)2e−2η +( fw −2)e−η
,

(11)
which is a first-order linear differential equation, where its
general solution can readily be found as

g = ( fw −2)e−η + c1e−2η+( fw−2)e−η
, (12)

wherec1 is a constant of integration.
Upon substitution, we have

f ′′ = ( fw −2)e−η + c1e−2η+( fw−2)e−η
. (13)

Integrating Eq. (13) with respect toη , we obtain

f ′(η) =−( fw −2)e−η

+c1

(
1

( fw −2)2 −
e−η

fw −2

)
e( fw−2)e−η

+ c2, (14)

where c2 is another constant of integration. Using the
boundary conditionf ′(∞) = 1, we obtain

c1
1

( fw −2)2 + c2 = 1. (15)

Next, integrating Eq. (14) with respect toη , we obtain

f (η) = ( fw −2)e−η

+
c1

( fw −2)2

(
e( fw−2)e−η −Ei(( fw −2)e−η)

)

+c2η + c3, (16)

where Ei denotes the well-known Exponential Integral
function andc3 is yet another constant of integration
which can be determined from the boundary condition
f (0) = fw as

c3 = 2− c1

( fw −2)2

(
e( fw−2)−Ei( fw −2)

)
. (17)

Consequently, we have

θ (η) =
1

±Rak
Pex

[
−( fw −2)e−η +c1(

1
( fw −2)2

− e−η

fw −2
)e( fw−2)e−η

]

+
1

±Rak
Pex

(c2−1) . (18)

The initial conditionθ (0) = 1 leads to

c1

(
1

( fw −2)2 −
1

fw −2

)
e( fw−2)+ c2 =±Rak

Pex
+ fw −1.

(19)
Eq. (15) and Eq. (19) compose a system of two linear
equations in two unknown, i.e.c1 andc2. This system is
solvable when the determinant of the coefficient matrix is
nonzero, i.e.

△=
1

( fw −2)2 −
(

1
( fw −2)2 −

1
( fw −2)

)
e( fw−2) 6= 0.

(20)

Therefore the coefficient values are

c1 =
2∓ Rak

Pex
− fw

1
( fw−2)2

−
(

1
( fw−2)2

− 1
( fw−2)

)
e( fw−2)

(21)

and

c2=

1
( fw−2)2

(
±Rak

Pex
+ fw −1

)
−
(

1
( fw−2)2

− 1
( fw−2)

)
e( fw−2)

1
( fw−2)2

−
(

1
( fw−2)2

− 1
( fw−2)

)
e( fw−2)

.

(22)
Thus the pair of approximate analytic closed-form
solutions( f (η), θ (η)) of system (1)-(2) subject to the
boundary conditions (3)-(4) is finally obtained.

2.2 Case 2: λ = 0

For λ = 0, Eq. (2) becomes

θ ′′+
1
2

f θ ′ = 0. (23)

As stated before, we begin first by assuming that the
preliminary exact closed-form solutions of the coupled
nonlinear system Eq.(1) and Eq.(23) are in the forms

f (η) =
1

αη +β
(24)

and

θ (η) =
A

(αη +β )2 , (25)

whereA, α andβ are three parameters to be determined.
Because we assume that (24) and (25) satisfy Eq. (1) and
Eq. (23), then by substituting them into these equations
and solving the resulting equations, we obtain

α =
1
6

(26)

and

A =− 1
6K

, whereK =±Rak

Pex
. (27)

By substituting the calculated values ofα andA into Eq.
(24) and Eq. (25), we find that

f (η) =
1

1
6η +β

(28)

and

θ (η) =−
1

6K

(1
6η +β )2

. (29)

Using the given boundary conditionsf (0) = fw and
θ (0) = 1, we obtainβ = 1

fw
under the suitable condition

1
f 2
w
+

1
6K

= 0, (30)
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which means thatK =− 1
6 f 2

w
< 0. Thus

f (η) =
1

1
6η + 1

fw

(31)

and

θ (η) =−
1

6K

(1
6η + 1

fw
)2
. (32)

However, the obtained closed-form approximate solution
Eq. (31) does not satisfy the boundary condition at infinity
f ′(∞) = 1.
Proceeding as before, we insert the obtained solution forθ
from Eq. (32) into the RHS of Eq. (1) to obtain

f ′(η) = 1− 1
6

1

(1
6η + 1

fw
)2
. (33)

Integrating Eq. (33) from 0 to η and taking into account
that f (0) = fw, we obtain

f (η) = fw +η +

(
1

1
6η + 1

fw

− fw

)
, (34)

so that

f (η) = η +
1

1
6η + 1

fw

. (35)

Thus the approximate closed-form solutions of system (1)
and (23), whenλ = 0 and under the condition (30), is given
as

( f (η), θ (η)) = (η +
1

1
6η + 1

fw

, −
1

6K

(1
6η + 1

fw
)2
). (36)

An error analysis using the error remainder function

Table 1: The values of the error remainder functionER(η) for
small values ofη when 1

f 2
w
+ 1

6K = 0.

η fw = 10 fw = 20 fw = 50 fw = 100
| ER(η) | | ER(η) | | ER(η) | | ER(η) |

0 0.000000 0.000000 0.000000 0.000000
1 0.087890 0.040964 0.010249 0.003022
2 0.040964 0.014794 0.003022 0.000823
3 0.023148 0.007513 0.001422 0.000376
4 0.014794 0.004527 0.000823 0.000215
5 0.010249 0.003022 0.000536 0.000138
6 0.007513 0.002159 0.000376 0.000097
7 0.005740 0.001619 0.000279 0.000071
8 0.004527 0.001259 0.000215 0.000055
9 0.003662 0.001007 0.000170 0.000043
10 0.003022 0.000823 0.000138 0.000035

ER(η) for these new approximate analytic solutions

( f (η),θ (η)) is subsequently presented.
The substitution of Eq. (1) into Eq. (23) gives

θ ′′(η)+
1

2K
f (η) f ′′(η) = 0, (37)

exactly; in other words, the functions representing the
exact solutions forθ (η) and f (η) upon substitution will
make Eq. (37) an identity. However, we have not
calculated the exact functions but instead the functions in
Eq. (36) are actually very accurate approximations to the
respective solutions as we shall subsequently reveal; let
us now designate them as̃θ (η) and f̃ (η). Thus, instead
of Eq. (37), upon substitution of the approximate
functions into the left hand side of Eq. (37), we define the
nonzero error remainder functionER(η) as

θ̃ ′′(η)+
1

2K
f̃ (η) f̃ ′′(η) =

1
36K

η
(1

6η + 1
fw
)3

= ER(η).

(38)
In Tables 1-2, we display the computed values ofER(η)
for various small and large values ofη and different values
of fw andK such that 1

f 2
w
+ 1

6K = 0.

Table 2: The values of the error remainderER(η) for large
values ofη when 1

f 2
w
+ 1

6K = 0.

η fw =−20 fw =−10 fw = 10 fw = 20
| ER(η) | | ER(η) | | ER(η) | | ER(η) |

100 0.00000908 0.00000366 0.00000353 0.00000891
200 0.00000226 0.00000090 0.00000089 0.00000223
300 0.00000100 0.00000040 0.00000039 0.00000099
400 0.00000056 0.00000022 0.00000022 0.00000056
500 0.00000036 0.00000014 0.00000014 0.00000035
600 0.00000025 0.00000010 0.00000009 0.00000024
700 0.00000018 0.00000007 0.00000007 0.00000018
800 0.00000014 0.00000005 0.00000005 0.00000014
900 0.00000011 0.00000004 0.00000004 0.00000011
1000 0.00000009 0.00000003 0.00000003 0.00000008
2000 0.00000002 0.00000000 0.00000000 0.00000002

3 Approximate analytic series solution by the
modified Adomian decomposition method

We next propose to solve this boundary value problem for
the nonlinear coupled system by the modified Adomian
decomposition method (ADM) [17]-[38].
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3.1 Case: K =±Rak
Pex

= 0

For the limiting case of forced convection, the governing
equations can be written by settingRak

Pex
= 0 as

f = η + fw (39)

and

θ ′′+
λ +1

2
(η + fw)θ ′−λ θ = 0, (40)

subject to the boundary conditions (4).
We rewrite Eq. (40) in Adomian’s operator-theoretic
notation as

L1θ (η) = Rθ (η), (41)

where

L1θ =
d2θ
dη2 (η) andRθ =−λ +1

2
(η + fw)θ ′+λ θ . (42)

Next by applying the inverse linear operator

L−1
1 (.) =

∫ η

0

∫ η

0
(.)dηdη (43)

to both sides of Eq. (41), we obtain

θ (η) = 1+ γη − λ +1
2

∫ η

0

∫ η

0
(η + fw)θ ′(η)dηdη

+λ
∫ η

0

∫ η

0
θ (η)dηdη , (44)

whereγ = θ ′(0).
The Adomian decomposition method defines the unknown
functionθ (η) by the series

θ (η) =
∞

∑
n=0

θn(η), (45)

which we substitute into Eq. (44) to obtain
∞

∑
n=0

θn = 1+ γη − λ +1
2

∫ η

0

∫ η

0
(η + fw)

∞

∑
n=0

θ ′
n(η)dηdη

+λ
∫ η

0

∫ η

0

∞

∑
n=0

θn(η)dηdη . (46)

We set the recursive relation as




θ0(η) = 1+ γη ,

θn+1(η) = − λ+1
2

∫ η
0

∫ η
0 (η + fw)θ ′

n(η)dηdη

+ λ
∫ η

0

∫ η
0 θn(η)dηdη , n ≥ 0,

(47)

which in turn gives




θ0(η) = 1+ γη ,

θ1(η) =
(
− λ+1

2 γ fw +λ
)

η2

2!

+
(
− λ+1

2 γλ γ
)

η3

3! ,

....

(48)

To determine the constantγ, we use the remaining
boundary condition

θ (η) = 0, η → ∞. (49)

It is clear that this condition cannot be applied directly to
the series of

θ (η) = θ0+θ1+ .... (50)

We can readily evaluate the constantγ by calculating the
Padé approximants of this series [28], which possess the
advantage of transforming the polynomial approximation
into a rational function of polynomials.
However the use of the Padé approximants requires
considerable calculations. Here we will show how the
constantγ can be easily determined by employing less
computational work. To provide a clear overview of this
technique, two examples will be subsequently discussed.

3.2 Examples

Example 1.Consider the case: λ = 0 with K = 0, then Eq.
(36) becomes

θ ′′(η)+
1
2
(η + fw)θ ′(η) = 0, (51)

which is a second-order linear differential equation that
can be integrated to give

θ ′(η) = c1e−
1
2 ( fwη+ η2

2 )
, (52)

or

θ (η) = c1
√

πe
f 2
w
2 er f

(
fw +η

2

)
+ c2, (53)

where theci, for i = 1,2, are constants of integration and
er f denotes the Error Function which is defined as

er f (x) =
2√
π

(
x− 1

3
x3+

1
10

x5− 1
42

x7+
1

216
x9+ ...

)
.

(54)
Using the given boundary conditionsθ (0) = 1 andθ (∞) =
0 and taking into account thater f (0) = 0 ander f (∞) = 1,
we obtain

√
πc1e

1
2 f 2

wer f

(
fw

2

)
+ c2 = 1 (55)

and √
πc1e

1
2 f 2

w + c2 = 0. (56)

We recognize that these two equations compose a system
of two linear equations in two unknowns, i.e.,c1 andc2.

This system is solvable when the determinant of the
coefficient matrix is nonzero, i.e.

△=
√

πe
f 2
w
2

(
er f

(
fw

2

)
−1

)
6= 0. (57)
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Therefore the coefficient values are obtained as

c1 =
1

√
πe

f 2
w
2

(
er f
(

fw
2

)
−1
) (58)

and

c2 =− 1

er f
(

fw
2

)
−1

. (59)

If we choosefw = 0, then c1 = − 1√
π and c2 = 1, from

which it follows that the exact closed-form solution is

θ (η) = 1− (
η
2
). (60)

Following Adomian’s decomposition method, we
calculate





θ0(η) = 1+ γη ,

θ1(η) = − γ
12η3,

θ2(η) = γ
160η5,

θ3(η) = − γ
2688η

7,

(61)

and so on. Thus the solution in a series form is given as

θ (η) = 1+ γη − γ
12

η3+
γ

160
η5− γ

2688
η7+ ... (62)

or

θ (η) = 1+2γ
(

η
2
− 1

3
(

η
2
)3+

1
10

(
η
2
)5− 1

42
(

η
2
)7+ ...

)

(63)
and in a closed form as

θ (η) = 1+2γ
(√

π
2

(
η
2
)

)
. (64)

Then we evaluate this solution atη = ∞ and use the
remaining boundary condition to obtain

1+2γ
(√

π
2

(∞)

)
= 0. (65)

Hence, we have

γ =− 1√
π
, (66)

which gives the exact solution as

θ (η) = 1− (
η
2
). (67)

Example 2.Consider the case when λ = 1
3 and fw = 0

with K = 0.

Following Adomian’s decomposition method, we
calculate




θ0(η) = 1+ γη ,

θ1(η) = 1
3

η2

2! − γ 1
3

η3

3! ,

θ2(η) = − 1
3

η4

4! + γ 5
9

η5

5! ,

....

(68)

Thus the solution in a series form is given as

θ (η) =
(

1+
1
3
2! η

2−
1
3
4! η

4+ ...

)
+ γ
(

η −
1
3
3! η

3+
5
9
5! η

5+ ...

)
.

(69)
We observe that the first and second terms of this series
can be written as

1+
1
3
2!

η2−
1
3
4!

η4+ ...

=

(
1−

η2

3

1!
+

(−η2

3 )2

2!
+ ...

)(
1+

1
2!

η2+
7
3

4!
η4+ ...

)
(70)

and

η −
1
3

3!
η3+

5
9

5!
η5+ ...

=

(
1−

η2

3
1!

+
(−η2

3 )2

2!
+ ...

)(
η +

5
3
3!

η3+
5
5!

η5+ ...

)
.(71)

These can be written in closed form as

1+
1
3

2!
η2−

1
3

4!
η4+ ...= e−

1
3η2

F1(
3
4

;
1
2

;
η2

3
) (72)

and

η −
1
3

3!
η3+

5
9

5!
η5+ ...= e−

1
3η2

H− 3
2
(

x√
3
), (73)

whereF1(a; b; η) is a confluent hypergeometric function
of the first kind andHn is a Hermite polynomial.
Thus the particular solution of this problem is given as

θ (η ;γ) = e−
1
3η2

F1(
3
4

;
1
2

;
η2

3
)+ γe−

1
3η2

H− 3
2
(

x√
3
),

(74)
which is the indeed the exact solution of this problem,
and from which the remaining boundary condition
θ (η) = 0, η → ∞ is satisfied for all values ofγ.
Consequently, the solutionθ (η ;γ) depends on the
parameterγ.

3.3 Case: K =±Rak
Pex

6= 0

First, for the purpose of comparison, we considerK = 1,
where the boundary conditionf ′(∞) = 0 is chosen instead
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of the above nonhomogeneous boundary condition
f ′(∞) = 1. This problem was originally proposed by
Cheng [14,15].
Thus the substitution of Eq. (1) into Eq. (2) gives

f ′′′+
λ +1

2
f f ′′−λ ( f ′)2 = 0. (75)

Eq. (75) with the boundary conditionsf (0) = fw and
f ′(∞) = 0 can be transformed into an equivalent problem.
Let us consider the following transformation [16]:

z(ξ ) = f ′(η), ξ = α − f (η), α = f (∞). (76)

We have

z′(ξ ) =
dz
dξ

=− f ′′(η)
f ′(η)

(77)

and

z′′(ξ ) =
d2z
dξ 2 =

f ′′′(η)
( f ′)2(η)

− ( f ′′)2(η)
( f ′)3(η)

. (78)

Substituting these into Eq. (75), we obtain

d
dξ

(ξ
dz
dξ

)+
1+λ

2
(ξ −α)

dz(ξ )
dξ

−λ z(ξ ) = 0. (79)

Since f ′(∞) = 0, f ′(0) = 1 and f (0) = fw, we obtain
z(0) = 0 andz(α − fw) = 1. Hence, the boundary value
problem Eq. (75) with f ′(∞) = 0, f ′(0) = 1 and
f (0) = fw can be transformed into the new boundary
value problem
{

d
dξ (z

dz
dξ )+

λ+1
2 (ξ −α) dz(ξ )

dξ −λ z(ξ ) = 0,
z(0) = 0, z(α − fw) = 1.

(80)

Our aim is to find the solutionz(ξ ) and then computeα by
means of the modified Adomian decomposition method to
obtain accurate quantitative solutions.
By integrating the first equation of Eq. (80) from 0 to ξ
and taking into account that the initial conditionz(0) = 0,
we obtain

z
dz
dξ

+
λ +1

2
(ξ −α)z(ξ )− 3λ +1

2

∫ ξ

0
z(ξ )dξ = 0. (81)

Consequently, we have

z2(ξ )+ (λ +1)
∫ ξ

0
(ξ −α)z(ξ )dξ

−(3λ +1)
∫ ξ

0

∫ ξ

0
z(ξ )dξ dξ = 0. (82)

Now we seek for a convergent series solution as

z(ξ ) =
∞

∑
n=0

Cnξ n
. (83)

Thus assuming the convergence of the Cauchy product, we
obtain

z2(ξ ) =
∞

∑
n=0

ξ n
n

∑
k=0

CkCn−k. (84)

The substitution of (83)-(84) into Eq. (82) yields
∞

∑
n=0

ξ n
n

∑
k=0

CkCn−k

+(λ +1)

[∫ ξ

0

∞

∑
n=0

Cnξ n+1dξ −α
∫ ξ

0

∞

∑
n=0

Cnξ ndξ

]

−(3λ +1)
∫ η

0

∫ η

0

∞

∑
n=0

Cnηndηdη = 0. (85)

Carrying out these integrations, we obtain
∞

∑
n=0

ξ n
n

∑
k=0

CkCn−k

+(λ +1)

[
∞

∑
n=0

Cn

n+2
ξ n+2−α

∞

∑
n=0

Cn

n+1
ξ n+1

]

−(3λ +1)
∞

∑
n=0

Cn

(n+1)(n+2)
ξ n+2 = 0. (86)

In the second, third and fourth summations on the LHS,n
can be replaced byn−2, n−1 andn−2, respectively, to
write

∞

∑
n=0

ξ n
n

∑
k=0

CkCn−k +(λ +1)

[
∞

∑
n=2

Cn−2

n
ξ n −α

∞

∑
n=1

Cn−1

n
ξ n

]

−(3λ +1)
∞

∑
n=2

Cn−2

n(n−1)
ξ n = 0. (87)

Finally, we can equate coefficients of the like powers ofξ
on the LHS with those on the RHS to arrive at recurrence
relations for the coefficients. Thus





C0 = 0,

C1 = α λ+1
2 ,

C2 = λ−1
8 ,

....

(88)

The general recurrence relations for the coefficients is

∑n
k=0CkCn−k +(λ +1)

[
Cn−2

n −α Cn−1
n

]
− (3λ +1) Cn−2

n(n−1) = 0, n ≥ 2,

(89)
whereC0 = 0 andC1 = α λ+1

2 .

The solution can then be written as

z(ξ ) =C0+C1ξ +C2ξ 2+C3ξ 3+ ..., (90)

where the only unknown constant isα.

In principle, α can be determined by imposing the
remaining boundary condition at the second point, that is
z(α − fw) = 1.
Thus

∞

∑
n=0

Cn(α − fw)
n = 1. (91)
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This matching equation is a nonlinear algebraic equation
in the undetermined coefficientα. Thus, we solve for the
first three terms

C0+C1(α − fw)+C2(α − fw)
2 = 1 (92)

to obtain

(5λ +3)α2−2 fw(3λ +1)α + f 2
w(λ −1)−8= 0, (93)

which is the same equation that was obtained by
Govindarajulu and Malarvizhi [15].
Cheng [14] showed that the range ofλ for which the
problem is physically realistic is 0≤ λ ≤ 1.
For λ = 1, the coefficientsC0 = 0, C1 = α 1+λ

2 and
Ci = 0, i ≥ 2. Thus, an analytical solution forz(ξ ) can be
determined by returning the value ofα to the truncated
solution of the original equation Eq. (90).

z(ξ ) = α
1+λ

2
ξ = αξ , (94)

from which it follows that

f ′(η) = α(α − f (η)). (95)

Consequently,

f (η) = α +( fw −α)e−αη
, (96)

whereα2−2 fwα −1= 0, that is

α1,2 = fw ±
√

f 2
w +1. (97)

Using Eq. (1), we obtain

θ (η) = e−αη
. (98)

Thus

( f (η), θ (η)) = (α +( fw −α)e−αη
, e−αη), (99)

which is indeed the exact solution of this problem when
λ = 1.
This is once again the same result that was obtained by
Govindarajulu and Malarvizhi [15].
Taking the first three components of the solutionz(ξ ), we
obtain

z(ξ ) =C0+C1ξ +C2ξ 2 = α
λ +1

2
ξ +

λ −1
8

ξ 2
. (100)

We can now return to the original dependent variablef (η)
to obtain

f (η) =C1(α − f (η))+C2(α − f (η))2
, (101)

which can be written as

−(α − f (η))′ =C1(α − f (η))+C2(α − f (η))2
. (102)

Accordingly, the exact solution is therefore explicitly
given as

f (η) = α − C1(α − fw)

C2(α − fw)(eC1η −1)+C1eC1η . (103)

Hence,

θ (η) =
C1(α − fw)

[
C1C2(α − fw)eC1η +C2

1eC1η]

[C2(α − fw)(eC1η −1)+C1eC1η ]
2 .

(104)
Figures 1 and 2 has been drawn to show the 3rd−stage
approximation off (η) for various values offw = −1, 0
and 1 whenλ = 0 and 1.
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Fig. 1: Plot of the 3rd-stage approximation obtained forf (η) by
the ADM whenλ = 0.
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Fig. 2: Plot of the 3rd-stage approximation obtained off (η) by
the ADM whenλ = 1
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4 Conclusion

In this work, we have considered the nonlinear coupled
boundary-layer equations that describe the problem of
injection or extraction of fluid along the surface of an
inclined wall embedded in a saturated porous medium.
We have demonstrated that closed-form analytic
approximate solutions can be obtained in a
straightforward manner by using a direct method. Also,
very good approximate analytic series solutions were
obtained by the modified Adomian decomposition
method for the two limiting cases of free and forced
convection by settingRak

Pex
= 0 andRak

Pex
6= 0, respectively.
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