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Abstract: In this paper, we have considered the nonlinear coupleddaoyrayer equations that describe the problem of injaabio
extraction of fluid along the surface of an inclined wall ewibed in a saturated porous medium. We obtain very accurpteximate
analytic solutions in closed-form by a direct method for $special case2 = 0 andA = 1. Furthermore, an accurate analytic series
solution is obtained by the modified Adomian decompositia@ihad for the two limiting cases of free and forced convechy setting
ek = 0 and gk # 0, respectively.
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1 Introduction literature concerning this topic including a summary of
the numerical and experimental results can be found in
the book by Pop and Inghan7][and also by Nield and

ey £ st o elanFl. The S bloyancy convecte problen il
P P y been studied is the free convection boundary-layer flow

in the last few decades, and has attracted a great deal Qer a vertical flat plate. Stewartson (1958) and Gil

interest from researchers in different areas of smenc.e(l%S) were the first to provide a description of the

interest is the diverse, important applications of thesboundary-layer flow over a horizontal surface. anes
subject. Some of the ’applications are: nuclear wast 1973) was the first to study freg convection
diSpOSElﬂ electronic cooling, food procéssing thermal oundary-layer flow near a flat surface. It is worth noting

' ' ' that the study of the convective problem over vertical

:Ezldlgtrligrll a'nd"lfz‘:{i'gﬁé tﬂ!\t chnoéiryfno%lclje dm;jlsn);ra?:rgr urfaces has attracted growing attention in the research
PP P iterature, while rather less attention has been devoted to

e tarEona 6 St 18 v souktons oECTVecIonaver cined srfaces
P pung 9 g¢€q Mixed convection flows are characterized by the

fluid flow and heat transfer in porous media using certain Ry . .
boundary-layer assumptions. Woodirt, [Prats p] and ~ Puoyancy parameter= g, whereRa is the Rayleigh

Sutton B] investigated free convection in porous media. Number, whilePey is the Peclet number. The parameker
Haajizadeh and Tierd] obtained several analytical and Measures the effect of the free convection when compared
numerical results on mixed convection in a horizontal {0 the forced convection on the fluid flow. The cése 0
plate. Kwendakwema and BoehiH| pbtained numerical corresponds to a heated plate (assisting the forced flow,
results for mixed convection about a vertical concentricWWhile k < 0 corresponds to a cooled plate (opposing the
cylinder. Lai, Prasad and Kulacks] investigated the flow). Whenk — 0, it means that the forced convection

problem for mixed convection in a vertical porous layer, dominates the transport of heat, and when o the free
and obtained numerical results. Details about thetonvection dominates the transport. It turns out that the
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mixed convection occurs when the buoyancy parameter islecomposition method 1[]-[38. Both of these
bounded from above and from below by certain techniques lead to very accurate approximate solutions.
quantities, saKmax and kmin such thatkmin < k < Kmax.

When the natural buoyancy forces support the forced

flow, it will enhance the surface heat transfer. For details2 Approximate analytic solutions

about this subject, we refer the readerbpdnd [8].

The governing nonlinear coupled boundary-layerThe system 1)-(4) can be transformed into another
equations are given in9[- [10] as a system of two equivalent system in which the equations are decoupled

coupled nonlinear differential equations and combined into one equation. Indeed, integrating Eq.
(1) from O to n and taking into account the boundary
£ = iRi‘kel (1) conditions at infinityf’(c0) = 1 and@ () = 0, we obtain
PQ( 9
4 R
oA+l / f_iPeX6+1. (5)
0"+ ——f0-Af'6=0, 2
2 The substitution of Eq.5) into Eq. @) gives
subject to the boundary conditions R
+1
£(0) = fu, f'(c0) =1 @3) 4 == 1= A (f)2+ A1 =0, (6)
and Listed below are several special cases when the
0(0) =1, () =0, (4) third-order nonlinear equation Eqg6)( subject to the
boundary conditions3] is solvable by the proposed direct

wherefy, is the extraction or injection parameter. Positive
values {y > 0) determine flows with extractiorf,y < O
represents flows with injection, and the zero value
(fw = 0) corresponds to flow along an impermeable wall oy

with zero mass transfer wheleis a constant. 21CaseliA =1

The derivation of Eq.1)-Eq. () when the permeability  Aqgming that the exact solution of Ed)(whereA is

Q — o and the heat source/sink parameter 0 can be  .,ocan as 1is in the form '

also found in L1]-[12], and other related problems in ’

[13). f(n)=a+pe, )
Numerical integration using the fourth-order Runge-Kutta

method and the shooting technique have previously beeihere a and B are two nonzero parameters to be

proposed to solve this problem for the three special casedetermined. This proposed assumption was built on the
of A = 0, which corresponds to a uniform free stream fact that the vast majority of the obtained solutions are

flowing along an isothermal vertical wall with the derived in exponential forms. Because we have assumed
that Eq. ) satisfies Eq. &), then upon substitution and
isolving the resulting equation, we obtain= 2.

Using the initial condition f(0) = fy, we obtain

method.

injection rate varying with x‘%, A = 1, which
corresponds to the stagnation flow normal to a vertica
wall with linear temperature variation and a constant

e . ) = fw—2.
injection / extraction rate andl = %, which corresponds B = fw o .
0 a free stream flowing over an inclined walt (& 45%) By substituting the calculated values mfand 8 into Eq.

having constant heat flux where the injection rate varying(7 ), we immediately find that

with x~3, where a is the angle of inclinationg-[10]. f(n)=2+(fw—2)e ", (8)
The limiting cases of free and forced convection are also o .
presented in1] and [2]. which is indeed the preliminary exact closed-form

It may, however, be worthwhile if the physical models can Selution of Eq. §). However, this sglution does not satisfy
be constructed in such a manner that the coupled systerfi?® boundary condition at infinity’(c0) = 1. In view of
can either be solved analytically or transformed into thiS development, we will employ this boundary condition
another system in which the equations are decoupled antPgether with Eq. &) to achieve the second goal of our
solved separately. proposed technique by making a correction to our

The purpose of this work is to present a new technique fofPreliminary exact closed-form solution. o
solving the above system. We propose an algorithmlnsertlng the obtained solution E®)(@nd its derivative
consisting of two steps that will introduce a preliminary (1) = —(fu—2)e " )
exact closed-form solution to the system, followed by a W

correption to thgt solution. Approximate analytiq into Eq. (), we obtain

solutions are obtained by a direct method for the special

cases ofA =0 andA = 1. Also, an accurate analytic " +[2+ (fy—2)e " = (fy—2)%e 21+ (fy—2)e .
series solution is obtained by the modified Adomian (20)
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Substitutingf” = g into Eq. (L0), we obtain Therefore the coefficient values are
g +[2+ (fw—2)e Mg = (fw—2)% 21 + (fy—2)e ", 2F P — fu
(11) a7 ( 11 )e(fwfz) 1)
which is a first-order linear differential equation, whete i (fw—2)2 (fw—22  (fw=2)
general solution can readily be found as and
_ f _ 2 —nN —2f]+(fw—2)(37'7 12
g ( " )e Tae 7 ( ) (fWEZ)Z (i% + fw_ 1) - ((fwiz)z - (fWJLZ)) e(fW72)
wherec; is a constant of integration. Co= n n n (w2
Upon substitution, we have (w22 ((fw,z)z - (fw_z)) el
_ (22)
£ = (foy— 2)e "1+ cre 21+ (fw=2e, (13) Thus the pair of approximate analytic closed-form
) , , solutions(f(n), 6(n)) of system 1)-(2) subject to the
Integrating Eq. {3) with respect ta], we obtain boundary conditions3)-(4) is finally obtained.
f'(n) = —(fw—2)e™"
ro (- S Vw2, (14) 22 Case2 A =0
(fW - 2)2 fW - 2 ’ ' ’
where c; is another constant of integration. Using the ForA = 0, Eq. (2) becomes
boundary conditiorf’(o) = 1, we obtain L
1 0" +=f8 =0. (23)
Clm +c=1 (15) 2
" As stated before, we begin first by assuming that the
Next, integrating Eq.X4) with respect ta}, we obtain preli_minary exact closed-form solutio_ns of the coupled
F(n) = (fu—2)e" nonlinear system Edlj and Eq.R23) are in the forms
C1 (fu—2)e " _ - 1
+——= ('™ —Ei((fw—2)e™ " -
oo (fu—2)e™)) () = 5o (24)
+C2M +C, 18 g
where Ei denotes the well-known Exponential Integral o) — A o5
function andcg is yet another constant of integration ()= (an+p)2’ (25)
which can be determined from the boundary condition .
£(0) = fw as whereA, a and are three parameters to be determined.
Because we assume thad] and @5) satisfy Eq. {) and
., G (fw—2) _=ics Eq. 23), then by substituting them into these equations
C3=2 (fw—2)2 (e Bi(fu 2)) ' (17) and solving the resulting equations, we obtain
Consequently, we have a_ } (26)
6(n) = 6
1 _ 1 e el and
— | ~(fw=2)e N+ 17— — )¢ M ?° 1 R
i@{ (fw=22  fw-2 A= whereK = + 2% 27
Pe, . oK where Po, (27)
+ e (2 1) (18) By substituting the calculated values @fandA into Eq.
Pex (24) and Eq. 25), we find that
The initial conditionf(0) = 1 leads to 1
fn)=1+—= (28)
1 1 _ Ray 1
_ (fw—2) — X _ =N+ B
Cl((fW—Z)Z fW_2>e +c iPeerfW 1. 6
(19) and L
Eq. 15 and Eqg. 19 compose a system of two linear o(n) BK (29)
equations in two unknown, i.€; andc,. This system is n=- (in+pB)?
solvable when the determinant of the coefficient matrix is ) 6 N
nonzero, i.e. Using the given boundary conditions(0) = f,, and
6(0) = 1, we obtainB = { under the suitable condition
1 1 1 _— v
A= —~ — elfw=2) £ 0,
(=227 \(fw—22 (fu—2) 1.1 o 30
(20) zte =0 (30)
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which means that = —6—%2 < 0. Thus
w

1
f(n): %n+% (31)

and L
o) =-+%—. (32)

(g ++)?

(f(n),0(n)) is subsequently presented.
The substitution of Eq.1 into Eq. 3) gives

8() + () "(7) =0, (37)

exactly; in other words, the functions representing the
exact solutions foB(n) and f(n) upon substitution will
e Eq. 87) an identity. However, we have not

) , _mak
However, the obtained closed-form approximate solutionca|cylated the exact functions but instead the functions in
Eqg. 31) does not satisfy the boundary condition atinfinity £¢ (36) are actually very accurate approximations to the

f/(00) = 1.
Proceeding as before, we insert the obtained solutiof for
from Eq. 32) into the RHS of Eq.1) to obtain

1 1

respective solutions as we shall subsequently reveal; let

us now designate them #%n) and f(n). Thus, instead
of Eg. (37), upon substitution of the approximate
functions into the left hand side of E®7Y), we define the

f'in)=1-z3—7 (33)  nonzero error remainder functi@R(n) as
6(5n+ )
Integrating Eq. §3) from O ton and taking into account g~ i]ev () = 1 n —ER
that f (0) = fy, we obtain (m)+ 2K (mtn) 36K (3n + %)3 (n)-
(38)
- 1 In Tables 1-2, we display the computed value€&(n)
fn)="tw+n+ <%’7 + f; B fW) ’ (34) for various small and large valuesipfand different values
w of fy andK such that} + g = 0.
so that K
f =nN+-—-7. 35
(n)=n I L (35)

Thus the approximate closed-form solutions of syst&m (
and @3), whenA = 0 and under the conditio(), is given
as

Table 2: The values of the error remaind&R(n) for large
values ofp when + & =0.

1 &K |ER(n) | |ER(n) | [ER(n) | [ER(n) |
6 fuw 6 fuw 100  0.00000908 0.00000366 0.00000353 0.00000891
, . . . 200  0.00000226 0.00000090 0.00000089 0.00000223
An error analysis using the error remainder function 300 0.00000100 0.00000040 0.00000039  0.00000099
400  0.00000056 0.00000022 0.00000022 0.00000056
500 0.00000036 0.00000014 0.00000014 0.00000035
Table 1: The values of the error remainder functi&ik(n) for 600  0.00000025 0.00000010 0.00000009  0.00000024
small values ofy when % + & = 0. 700  0.00000018 0.00000007 0.00000007 0.00000018
W 800  0.00000014 0.00000005 0.00000005 0.00000014
B B B B 900  0.00000011 0.00000004 0.00000004 0.00000011
n | é”;{(_nﬁ | |f5WR(_r7§(\) | I];WR(_n?(\) ‘fvég( ;g’? 1000 0.00000009 0.00000003 0.00000003 0.00000008
0 0.000000 0.000000 0.000000 0.000000 2000 0.00000002 0.00000000 0.00000000 0.00000002
1 0.087890 0.040964 0.010249 0.003022
2 0.040964 0.014794 0.003022 0.000823
3 0.023148 0.007513 0.001422 0.000376
4 0.014794 0.004527 0.000823 0.000215
5 0.010249 0.003022 0.000536 0.000138
6 0.007513 0.002159 0.000376 0.000097
70005740 0.001619  0.000279  0.000071 3 Approximate analytic series solution by the
8 0.004527 0.001259 0.000215 0.000055 dpE‘) d Adomi dy " h y q
9 0.003662 0.001007 0.000170 0.000043 moairie omian decomposition metho
10 0.003022 0.000823 0.000138 0.000035

We next propose to solve this boundary value problem for
the nonlinear coupled system by the modified Adomian
ER(n) for these new approximate analytic solutions decomposition method (ADM[7]-[3§].
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3.1Case K = i%k =0 To determine the constang, we use the remaining
boundary condition
For the limiting case of forced convection, the governing

equations can be written by settifg = 0 as 8(n)=0,n — . (49)
f=n+fwy (39) It is clear that this condition cannot be applied directly to
the series of
and +1 6(n)=6o+61+... (50)
" / —

0"+ ——(n+fw)b -A16=0, (40) We can readily evaluate the constarity calculating the
subject to the boundary condition$ Padé approximants of this serieZg], which possess the
We rewrite Eq. 40) in Adomian’s operator-theoretic gdvantage of transformmg the poI_ynomlaI approximation
notation as into a rational function of polynomials.

L.6(n) =Re(n), (41) However the use of the Padé approximants requires

considerable calculations. Here we will show how the

where constanty can be easily determined by employing less
d2e A+l , computational work. To provide a clear overview of this
Lif=—-—(n)andRO=———(N+fw)0' +A6. (42)  technique, two examples will be subsequently discussed.
dn 2
Next by applying the inverse linear operator
. n rn 3.2 Examples
0=/ [ (dndn 43)
0 /0 Example 1.Consider the case: A = 0 with K = 0, then Eq.
to both sides of Eq4Q), we obtain (36) becomes
A+l on
o) =1+yn— 2= / )8 (n)dnd 1
(=385 Jo Jo (1 @ n)dneln 0'(n)+5(n+ 16 =0, (1)
+)‘/ / 6(n)dndn, (44) which is a second-order linear differential equation that
wherey = 8'(0). can be integrated to give
The Adomian decomposition method defines the unknown L o2
function8(n) by the series 0'(n) = cie2wn+7) (52)
n)=7Y 6n), (45 2
2 o) —er/mefart (210 e (9
which we substitute into Eg44) to obtain i ) .
A where thec;, for i = 1,2, are constants of integration and
Zogn 1+yn— Ll/ / N+ fw) Z)g/ n)dndn  erf denotes the Error Function which is defined as
2 1 15 154 1 4
[ [ entmanan. o 19= (e 30 g )
0 70 n= (54)
We set the recursive relation as Using the given boundary conditiof$0) = 1 and6 () =
6o(n) =1+yn, 0 and taking into account that f (0) = 0 ander f («0) = 1,
we obtain
Oni1(n) = /\H fo ]o (n + fw)6y(n)dndn (47) fuy
\/7—TC1E2 Weff<2>—|-C2—1 (55)
+AJg Jo n(n)dndn, n>0,
which in turn gives and -
6o(n) = 1+yn, Ve ez 4 ¢ = 0. (56)

) We recognize that these two equations compose a system
61(n) = (_AT”ny+/\) ’;—, of two linear equations in two unknowns, i.e;, andc;.
' (48) This system is solvable when the determinant of the

coefficient matrix is nonzero, i.e.
+ ( )\+1y)\ V)

sviod (at(%)-1) 0 @
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Therefore the coefficient values are obtained as

1

C1L= fvzv ; (58)
JTe? (erf (7W) _ 1)
and
1
C = N (59)
erf (7) -1
If we choosef,, = 0, thenc; = —in andc; = 1, from
which it follows that the exact closed-form solution is
. n
6(n) =1~ (3). (60)

Following Adomian’s decomposition method,
calculate

Bo(n) =1+yn,
91(’7) = _1_)/2’73a
(61)
62(n) = 15N>,
93(”) = _Tyg8n77

and so on. Thus the solution in a series form is given as

6(n)=1+yn— 1—y2n3+ Yopso Y g7 (62)

160 2688
or
_ n_1ns 1mns 109
o) =1+2¢( - 53+ 15(3)°~ 353+ -
(63)
and in a closed form as
m
o =1+2v(5(D). (64)

Then we evaluate this solution @it = » and use the
remaining boundary condition to obtain

1+ ZV(‘/TTT(oo)) =0. (65)
Hence, we have
1
=—— 66
y T (66)
which gives the exact solution as
- n
6(n) =1~ (3). (67)

Example 2.Consider the case when A = $ and f, = 0
with K = 0.

we

Following Adomian’s decomposition method, we
calculate
6o(n) = 1+yn,
2 3
6i(n) = 3% — V3%,
(68)
4 5

Thus the solution in a series form is given as

1 1 1 5
o(n) = (1+ Zn?—2nt+ ) + y<n —3n3+ %n5+.,.> .
(69)
We observe that the first and second terms of this series
can be written as

5.2 3
1+ 50" = 50+

T (=572 1,4 4
=1t | [ttt f70)

and

T2 33 55
ol T Tt B KRl M= LI A L)

3 1n
32 _3p4, _g g2 2 I
Lo =gt =e3T Rz 5 5) (72
and
% 3 g 5 _ 7%,72H X 73
N-g g = THa(zm). (73

whereF;(a; b; n) is a confluent hypergeometric function
of the first kind andH,, is a Hermite polynomial.
Thus the particular solution of this problem is given as

—1n? X
)+ye Hfg(\/é)a
(74)
which is the indeed the exact solution of this problem,
and from which the remaining boundary condition
6(n) =0, n — o« is satisfied for all values ofy.
Consequently, the solutiorf(n;y) depends on the

parametey.

w|,

‘) — e 3n? § }
e(nly) € 3 F1(4’ 2’

3.3 Case K =+pk £0

First, for the purpose of comparison, we consier 1,
where the boundary conditidfii(e) = 0 is chosen instead
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of the above nonhomogeneous boundary conditionThe substitution of§3)-(84) into Eq. 82) yields
f/(0) = 1. This problem was originally proposed by n

Cheng [14,15]. . . ZOE“ ZOCkCn,k
Thus the substitution of Eql)into Eq. @) gives oo ke
& & ®
Co™ g —a [ 5 Coglde
b2, PR

Eq. (75 with the boundary conditiong (0) = f,, and B /” /” e ~ N _
f’(e0) = 0 can be transformed into an equivalent problem. (3A+1) o Jo nZOCnn dndn =0. (85)

Let us consider the following transformatiald]:

2§)=1'(n), E=a—1f(n), a=1f(o). (76)

f”’+—’\“2Llff”_A(f’)2:o. (75) +(A+1)

Carrying out these integrations, we obtain

o] n
n
We have nZOE kZoCkCn_k
2(8)= 32— L) ) . .
d¢  f(n) +A+D | Y Sn_gniz_g > S snﬂ
and ) , Lpn+2 Lpn+1
¢z "(n)  (f%n) =
(&)= 5= — : 78 _ G g2
R (R (O M DR rs 1 Crs L (®0)
Substituting these into Eq7¥§), we obtain In the second, third and fourth summations on the LHAIS,
d _dz. 14+A dz(§) B can be replaced by—2, n—1 andn— 2, respectively, to
g Ege)t 5 (€ a)=g A AE=0. (79)  wite
[oe] n [ee] [ee]
Since f/(w) = 0, f'(0) = 1 and f(0) = fw, we obtain 5 &" Y CGChk+(A+1) | Crzen_ g 3 C”—lsn]
z(0) = 0 andz(a — fyw) = 1. Hence, the boundary value n=0 k=0 iz N =L
problem Eq. {5 with f/(0) = 0, f/(0) = 1 and ®  Cho
f(0) = f,, can be transformed into the new boundary ——(3A+1) zzn(n—l)fnzo' (87)
n=

value problem

Finally, we can equate coefficients of the like powerg of
%(23—?) + )‘_Erl(f - a)%fa —AZ¢&) =0, (80) on the LHS with those on the RHS to arrive at recurrence
2(0) =0, z(a — fw) = 1. relations for the coefficients. Thus
Our aim is to find the solutior(& ) and then compute by G =0,
means of the modified Adomian decomposition method to
obtain accurate quantitative solutions. C = aA—gl,
By integrating the first equation of Eg8@) from 0 to & 88)
and taking into account that the initial conditia{®) = 0, C, = /\Tfl,
we obtain
¢
252+ A2 e aae) - P [Cagyde=o. @1
& 2 2 Jo

The general recurrence relations for the coefficients is
Consequently, we have

H SP oGCnk+(A+1) | &2 —qStl _(3) 4 1), 02— 0, n>2,
ZZ(E) +(A+ 1)/0 (& —a)z(§)dg 0 [ } " (89)
£ g whereCp = 0 andCy = a 242,
—(3A+ 1)/ / z(&)dédé = 0. (82)  The solution can then be written as
o Jo

Now we seek for a convergent series solution as Z2(&) =Co+Cr& +CrE? +CoE3 + ..., (90)

e n where the only unknown constantas
A8) = n;C”E ’ (83) In principle, a can be determined by imposing the

remaining boundary condition at the second point, that is
Thus assuming the convergence of the Cauchy product, we(a — fy) = 1.
obtain Thus

00 [oe]

2)- 5 &3 O (84 > Crla— " =1 (o1)

k=0 n=

(@© 2015 NSP
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This matching equation is a nonlinear algebraic equatiorAccordingly, the exact solution is therefore explicitly

in the undetermined coefficieat. Thus, we solve for the
first three terms

Co+Cu(a — f) +Co(a — f)2 =1 (92)
to obtain

(5A +3)a®—2fy,(3A + )a + f2(A —1) —8=0, (93)

which is the same equation that was obtained by o(n) =

Govindarajulu and Malarvizhil[5].

Cheng [L4] showed that the range of for which the

problem is physically realisticis@ A < 1.

For A = 1, the coefficientsCo = 0, C; = a5 and

Ci =0, i > 2. Thus, an analytical solution f&§) can be
determined by returning the value af to the truncated
solution of the original equation EcRQ).

2§)=ar i e~ at, (94
from which it follows that
f'(n) = a(a —f(n)). (95)
Consequently,
f(n)=a+ (fw—a)e ", (96)
wherea? — 2f,a — 1= 0, that is
a12=futy/f3+1 97)
Using Eq. (), we obtain
8(n)=en. (98)
Thus
(f(n), 8(n)) = (a+ (fw—a)e 1, e ), (99)

which is indeed the exact solution of this problem when

A=1

This is once again the same result that was obtained by 15l

Govindarajulu and Malarvizhilg].

Taking the first three components of the solutaé), we

obtain

A—1
8

A+1

Z(f)=C0+C15+C2€2:aTE+ &2, (100)

We can now return to the original dependent varidtgle)
to obtain

f(n) =Cu(a—f(n))+Cala - f(n))?,

which can be written as

—(a—f(n)) =Cy(a—f(n))+Ca(a—f(n))% (102)

(101)

given as
fm=a-g @1 icen @09
Hence,

Ci(a — fw) [C1Ca(a — fu)€F1T 4+ C26R11]
[Cola — fy) (€10 — 1)+ C&n]?

(104)
Figures 1 and 2 has been drawn to show thé-3tage
approximation off (n) for various values offy, = —1, 0
and 1 whem =0and 1

7fwz—1, a=0.96768
——f =0, a=1.30163
w
f =1, 0=1.85573
w

Fig. 1: Plot of the 3d-stage approximation obtained fo(n) by
the ADM whenA = 0.

0 —— 1,71, 0=1.36640
—— 1,70, 0=1.61611
f,=1 ,0=2.00367

6 8 10

Fig. 2: Plot of the 3d-stage approximation obtained 6fn) by
the ADM when) = 3.
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[21] G. Adomian, R. Rach, Applied Mathematics Lettérsl1-
12 (1992).

In this work, we have considered the nonlinear coupled[22] G. Adomian, R. Rach, Computers and Mathematics with
boundary-layer equations that describe the problem of Applications23, 79-83 (1992).

injection or extraction of fluid along the surface of an

inclined wall embedded in a saturated porous medium.

[23] G. Adomian, R. Rach, Applied Mathematics Lett&r29-
30 (1992).

We have demonstrated that closed-form analytic[24] G. Adomian, R. Rach, Nonlinear Analysis 19928, 615-

approximate solutions can be obtained in

obtained by the modified Adomian decomposition
method for the two limiting cases of free and forced
convection by settin% =0 and% # 0, respectively.
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