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Abstract: For H-differentiable functionf from a closed rectangleQ in Rn into Rn, a result of Song, Gowda and Ravindran [On
Characterizations ofP- andP0-Properties in Nonsmooth Functions. Mathematics of Operations Research. 25: 400-408 (2000)] asserts
that f is aP(P0)− function onQ if the HQ-differentialTQ(x) at eachx∈ Q consisting ofP(P0)− matrices. In this paper, we introduce
the concepts of relativelyP(P0)− properties in order to extend these results to nonsmooth functions when the underlying functions are
H-differentiable. We give characterizations of relativelyP(P0)− of vector nonsmooth functions. Also, our results give characterizations
of relatively P(P0)− when the underlying functions areC1-functions, semismooth-functions, and for locally Lipschitzian functions.
Moreover, we show useful applications of our results by giving illustrations to generalized complementarity problems.

Keywords: H-Differentiability, semismooth-functions, locally Lipschitzian, generalized Jacobian,P(P0)– properties, generalized
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1 Introduction

In this article, we give characterizations of relativelyP–
andP0– properties in nonsmooth functions. For functions
f ,g : Q ⊆ Rn → Rn, we say thatf and g are relatively
P0(P)-functions if, for anyx 6= y in Rn,

max
{i:xi 6=yi}

[ f (x)− f (y)]i [g(x)−g(y)]i ≥ 0 (> 0). (1)

If g(x) = x, then relativelyP0(P)-functions reduce to
P0(P)-function, i.e., we say thatf is a P0(P)-function if,
for anyx 6= y in Q,

max
{i:xi 6=yi}

(x− y)i[ f (x)− f (y)]i ≥ 0 (> 0). (2)

A matrix M ∈ Rn×n is said to be aP0(P)-matrix if the
function f (x) = Mx is a P0(P)-function or equivalently,
every principle minor ofM is nonnegative (respectively,
positive [5]). P0(P)- functions have attracted many
researchers in the areas of complementarity and (box)
variational inequality problem, see e.g., [10] and the
references therein. It is known thatP0(P)-function is a

generalization to every monotone (strictly monotone)
function.

Fiedler and Pt ´ak in [6] showed that for an affine
function f (x) = M x + q, P0(P)–property on Rn is
equivalent to M being P0(P)– matrix. for Fréchet
differentiable functionf on a closed rectangleQ, Gale
and Nikaid [7] gave a characterization ofP–property, i.e.,
if the Jacobian matrix∇ f (x) is a P– matrix at allx ∈ Q,
then f is is a P– function. Subsequently, Moré and
Rheinboldt [13] gave a characterization ofP0–property,
i.e., the Jacobian matrix∇ f (x) is aP0– matrix onQ if and
only if f is is aP0– function onQ. In [19], Song, Gowda,
and Ravindran extended above results and characterized
P0– and P–properties when the underlying function is
H-differentiable. Moreover, they illustrated these
characterizations to nonlinear complementarity problems.
Motivated from the above results, we raise the following
questions: Can we extend theP0(P)-function in (2) in
order to give general characterizations when the
underlying functions areH-differentiable? Are these
characterizations useful in the area of complementarity
problems, and variational inequalities? This paper
answers these questions. We introduce the concepts of
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relativelyP(P0)− properties and give characterizations of
these concepts under appropriate conditions. Moreover,
we show the usefulness of these characterizations by
giving some illustrations to generalized complementarity
problems when the underlying functions areC1-functions,
semismooth-functions, locally Lipschitzian functions, and
H-differentiable.

2 Preliminaries

Throughout this paper, we regard vectors inRn as column
vectors. Vector inequalities are interpreted
componentwise. For a setK ⊆ Rn, coK denotes the
convex hull ofK andK denotes the closure ofK [17]. For
a differentiable functionf : Rn → Rm, ∇ f (x̄) denotes the
Jacobian matrix off at x̄. For a matrixA, Ai denotes the
ith row ofA.

Definition 1.A function φ : R2 → R is called a GCP
function if φ(a,b) = 0 ⇔ ab = 0,a ≥ 0, b ≥ 0. For the
problem GCP( f ,g), we define

Φ(x)=
[

φ( f1(x),g1(x)) . . .φ( fi(x),gi(x)) . . .φ( fn(x),gn(x))
]T

(3)
and, we callΦ(x) a GCP function for GCP( f ,g).

2.1 H-differentiability and H-differentials

The concepts ofH-differentiability and H-differentials
were introduced in [9] to study the injectivity of
nonsmooth functions. It has been shown in [9] that the
Fréchet derivative of a Fréchet differentiable function, the
Clarke generalized Jacobian of a locally Lipschitzian
function [1], the Bouligand subdifferential of a
semismooth function [12], [14], [16], and the
C-differential of a C-differentiable function [15] are
examples of H-differentials. Any superset of an
H-differential is an H-differential, H-differentiability
implies continuity, andH-differentials enjoy simple sum,
product and chain rules, see [9]. The H-differentiable
function need not be locally Lipschitzian nor directionally
differentiable [22]. These concepts give useful and unified
treatments for many problems in optimization,
complementarity problems, and variational inequalities
when the underlying functions are not necessarily locally
Lipschitzian nor semismooth, see [8], [9], [19], [20], [21],
[22], [23], [24], [25], [26], [27] .

We now recall the following from Gowda and
Ravindran [9].

Definition 2.Given a function F: Ω ⊆ Rn → Rm whereΩ
is an open set in Rn and x∗ ∈ Ω , we say that a nonempty
subset T(x∗) (also denoted by TF(x∗)) of Rm×n is an

H-differential of F at x∗ if for every sequence{xk} ⊆ Ω
converging to x∗, there exist a subsequence{xkj} and a
matrix A∈ T(x∗) such that

F(xkj )−F(x∗)−A(xkj − x∗) = o(||xk
j − x∗||). (4)

We say that F is H-differentiable at x∗ if F has an
H-differential at x∗.

Remark.It is shown that in [24] if a function
F : Ω ⊆ Rn → Rm is H-differentiable at a point ¯x, then
there exist a constantL > 0 and a neighbourhoodB(x̄,δ )
of x̄ with

||F(x)−F(x̄)|| ≤ L||x− x̄||, ∀x∈ B(x̄,δ ). (5)

Conversely, if condition (5) holds, thenT(x̄) := Rm×n can
be taken as anH-differential of F at x̄. We thus have, in
(5), an alternate description ofH-differentiability.
Clearly any function locally Lipschitzian at ¯x will satisfy
(5). For real valued functions, condition (5) is known as the
‘calmness’ ofF at x̄. This concept has been well studied in
the literature of nonsmooth analysis (see [18], Chapter 8).

The rest of this section shows the Fréchet derivative of
a Fréchet differentiable function, the Clarke generalized
Jacobian of a locally Lipschitzian function, the Bouligand
subdifferential of a semismooth function, and the
C-differential of aC-differentiable function are particular
instances ofH-differentials [9].
Fr échet differentiable functions

Let F : Rn → Rm be Fréchet differentiable atx∗ ∈ Rn with
Fréchet derivative matrix (= Jacobian matrix derivative)
{∇F(x∗)} such that

F(x)−F(x∗)−∇F(x∗)(x− x∗) = o(||x− x∗||).

Then F is H-differentiable with {∇F(x∗)} as an
H-differential.
Locally Lipschitzian functions

Let F : Ω ⊆ Rn → Rm be locally Lipschitzian at each
point of an open setΩ . For x∗ ∈ Ω , define the Bouligand
subdifferential ofF at x∗ by

∂BF(x∗) = {lim ∇F(xk) : xk −→ x∗,xk ∈ ΩF}

whereΩF is the set of all points inΩ whereF is Fréchet
differentiable. Then, the (Clarke) generalized Jacobian [1]

∂F(x∗) = co∂BF(x∗)

is anH-differential ofF at x∗.
Semismooth functions

Consider a locally Lipschitzian functionF : Ω ⊆ Rn →Rm

that is semismooth atx∗ ∈ Ω [12], [14], [16]. This means
for any sequencexk → x∗, and forVk ∈ ∂F(xk),

F(xk)−F(x∗)−Vk(x
k− x∗) = o(||xk− x∗||).
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Then the Bouligand subdifferential

∂BF(x∗) = {lim ∇F(xk) : xk −→ x∗,xk ∈ ΩF}.

is anH-differential ofF atx∗. In particular, this holds ifF
is piecewise smooth, i.e., there exist continuously
differentiable functionsFj : Rn → Rm such that

F(x) ∈ {F1(x),F2(x), . . . ,FJ(x)} ∀x∈ Rn.

C-differentiable functions

Let F : Rn → Rn be C-differentiable [15] in a
neighborhoodD of x∗. This means that there is a compact
upper semicontinuous multivalued mappingx 7→ T(x)
with x ∈ D and T(x) ⊂ Rn×n satisfying the following
condition at anya∈ D: ForV ∈ T(x),

F(x)−F(a)−V(x−a) = o(||x−a||).

Then, F is H-differentiable at x∗ with T(x∗) as an
H-differential.
Remark The following simple example, is taken from
[22], shows that anH-differentiable function need not be
locally Lipschitzian nor directionally differentiable.
Consider onR,

F(x) = xsin(
1
x
) for x 6= 0 andF(0) = 0.

ThenF is H-differentiable onRwith

T(0)= [−1,1] and T(c) = {sin(
1
c
)− 1

c
cos(

1
c
)} for c 6= 0.

We note thatF is not locally Lipschitzian around zero.
We also see thatF is neither Fréchet differentiable nor
directionally differentiable.

3 The relatively P(P0)– properties in
nonsmooth functions

The following result [13], [19] will be useful in this paper.

Theorem 1.f : Rn → Rn is a P0(P)-function, under each
the following conditions.

(a) f is Fréchet differentiable on Rn and for every x∈ Rn,
the Jacobian matrix∇ f (x) is aP0(P)-matrix.

(b) f is locally Lipschitzian on Rn and for every x∈ Rn,
the generalized Jacobian ∂ f (x) consists of
P0(P)-matrices.

(c) f is semismooth on Rn (in particular, piecewise affine
or piecewise smooth) and for every x∈ Rn, the
Bouligand subdifferential ∂B f (x) consists of
P0(P)-matrices.

(d) f is H-differentiable on Rn and for every x∈ Rn, an
H-differential Tf (x) consists ofP0(P)-matrices.

Remark. The converse statements in Theorem1 are
usually false forP-conditions.

For P0-conditions in Theorem1, the converse
statements of Item(a) and Item(c) are true, while the
converse statements of Item(b) and Item(d) may not
hold in general, see [13] and [19].

The following Lemma is needed in our subsequent
analysis.

Lemma 1.Suppose f,g : Rn → Rn and g is one-to-one and
onto. Define h: Rn → Rn where h:= f ◦g−1. Then f and
g are relativelyP0(P)-functions if and only if h isP0(P)-
function.

Proof.
Supposef and g are relativelyP0(P)– function, we

need to showh is P0(P) function. Sinceg is one-to-one
and onto, for allx,y ∈ Rn, there exist uniquex∗,y∗ ∈ Rn

with x = g−1(x∗) andy = g−1(y∗). For all x∗ 6= y∗ ∈ Rn,
we have

[h(x∗)−h(y∗)]Ti [x
∗− y∗]i = [h(g(x))−h(g(y))]Ti [g(x)−g(y)]i

= [ f (x)− f (y)]Ti [g(x)−g(y)]i
≥ 0.

(6)
the converse follows a similar argument.⊓⊔

The following proposition is given in [19] for P–
matrices.

Proposition 1.Let h : Ω → Rn be continuous whereΩ is
open set in Rn and H-differentiable at each point̄x ∈ Ω
with an H-differential Th(x̄) consisting ofP– matrices.
Then there exists vectors u and v arbitrarily close to zero
such that

(i)u < 0 and h(x̄+u)< h(x̄);
(i)v > 0 and h(x̄+ v)> h(x̄).

We recall that a continuous mapping is called a
homeomorphism if it is a one-to-one and onto mapping
and if its inverse mapping is also continuous.
The proof of the following theorem based on Proposition
1, is similar to the proofs of Theorem 3.4 in [11] and
Theorem 1 in [19].

Theorem 2.Let Q be a rectangular in Rn. Suppose
f : Q → Rn and g : Q → Rn are continuous and
H-differentiable atx̄ with H-differentials, respectively, by
Tf (x̄) and Tg(x̄). Suppose g is a homeomorphism. Let
h : Q → Rn be continuous where h:= f ◦ g−1 and
H-differentiable at each point x̄ ∈ Ω with an
H-differential Th(x̄) consisting ofP– matrices. Then h is a
P– function on Q, in particular, one-to-one. Moreover, f
and g are relativelyP-functions.

In view of Lemma 1 and Theorem1, we have the
following.
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Corollary 1.Let Q be a rectangular in Rn. Suppose
f : Q → Rn and g : Q → Rn are continuous and
H-differentiable atx̄ with H-differentials, respectively, by
Tf (x̄) and Tg(x̄). Suppose g is a homeomorphism. Let
h : Q → Rn be continuous where h:= f ◦ g−1 and
H-differentiable at each point x̄ ∈ Ω with an
H-differential Th(x̄) consisting ofP– matrices. Then f
and g are relativelyP-functions.

Remark.Note that if g(x) = x in Corollary 1, we get
Theorem 1 in [19].

The following theorem characterizes the relativelyP0–
property viaH-differentials.

Theorem 3.Let Q be a rectangular in Rn. Suppose f: Q→
Rn and g: Q→ Rn are continuous and H-differentiable at
x̄ with H-differentials, respectively, by Tf (x̄) and Tg(x̄). g
is a homeomorphism. Let h: Q→ Rn be continuous where
h := f ◦g−1 and H-differentiable at each point̄x∈ Ω with
an H-differential Th(x̄) consisting ofP0– matrices. Then h
is aP0– function on Q.

Remark.Note that if g(x) = x in Theorem 2, we get
Theorem 2 in [19].

In view of Lemma 1 and Theorem2, we have the
following.

Corollary 2.Let Q be a rectangular in Rn. Suppose
f : Q → Rn and g : Q → Rn are continuous and
H-differentiable atx̄ with H-differentials, respectively, by
Tf (x̄) and Tg(x̄). g is a homeomorphism. Let h: Q → Rn

be continuous where h:= f ◦g−1 and H-differentiable at
each pointx̄ ∈ Ω with an H-differential Th(x̄) consisting
of P0– matrices. Then f and g are relativelyP0-functions.

When f andg are Fréchet differentiable in which case
Tf (x̄) = {∇ f (x̄)} and Tg(x̄) = {∇g(x̄)}, we have the
following.

Corollary 3.Let Q be a rectangular in Rn. Suppose
f : Q → Rn and g: Q → Rn are continuous and Fréchet
differentiable on Rn and for every x∈ Rn, Fréchet
derivatives (= Jacobians), respectively, by∇ f (x) and
∇g(x). Suppose that g is a homeomorphism. Let
h : Q→ Rn be continuous where h:= f ◦g−1 and Fŕechet
differentiable at each point̄x ∈ Q with with Fŕechet
derivative matrix (= Jacobian matrix derivative)∇h(x̄)
consisting ofP0– matrix. Then

(i)h is aP0– function on Q.
(ii) f and g are relativelyP0-functions.

In view of Subsection2.1, we have the following
corollaries.

Corollary 4.Let Q be a rectangular in Rn. Suppose
f : Q → Rn and g: Q → Rn are continuous and locally
Lipschitzian and for every x∈ Rn, generalized Jacobians,
respectively, by∂ f (x̄) and ∂g(x̄). suppose that g is a
homeomorphism. Let h: Q → Rn be continuous where

h := f ◦g−1 and locally Lipschitzian at each point̄x ∈ Q
with generalized Jacobian∂h(x̄) consisting of P0–
matrices. Then

(i)h is aP0– function on Q.
(ii) f and g are relativelyP0-functions.

Corollary 5.Let Q be a rectangular in Rn. Suppose
f : Q → Rn and g : Q → Rn are continuous and
semismooth on Rn (in particular, piecewise affine or
piecewise smooth) and for every x∈ Rn, the Bouligand
subdifferentials, respectively, by∂B f (x̄) and ∂Bg(x̄).
suppose that g is a homeomorphism. Let h: Q → Rn be
continuous where h:= f ◦ g−1 and semismooth (in
particular, piecewise affine or piecewise smooth) at each
point x̄ ∈ Q with Bouligand subdifferential∂Bh(x̄)
consisting ofP0– matrices. Then

(i)h is aP0– function on Q.
(ii) f and g are relativelyP0-functions.

When g(x) = x in the above results, we get the
following.

Corollary 6.Under each of the following, f: Rn → Rn, is
P(P0)– function.

(a) f is Fréchet differentiable on Rn and for every x∈ Rn,
the Jacobian matrix∇ f (x) is a P(P0)– matrix.

(b) f is locally Lipschitzian on Rn and for every x∈ Rn,
the generalized Jacobian∂ f (x) consists ofP(P0)–
matrices.

(c) f is semismooth on Rn (in particular, piecewise affine
or piecewise smooth) and for every x∈ Rn, the
Bouligand subdifferential∂B f (x) consists ofP(P0)–
matrices.

4 Some applications to generalized
complementarity problems

In this section, we present some applications to
generalized complementarity problems to illustrate the
usefulness of our results. We consider a generalized
complementarity problem, denoted by GCP( f ,g), which
is to find a vector ¯x∈ Rn such that

f (x̄)≥ 0, g(x̄)≥ 0 and〈 f (x̄),g(x̄)〉= 0

where f : Rn → Rn andg : Rn → Rn areH-differentiable
functions.

By considering an GCP functionΦ : Rn → Rn

associated with GCP(f ,g) and the corresponding merit
function Ψ = 1

2||Φ||2 when the underlying functionsf
andg areH-differentiable. It should be recalled that

Ψ(x̄) = 0⇔ Φ(x̄) = 0⇔ x̄ solves GCP( f ,g).

We now give the following illustrations to show the
usefulness of our results, but first we compute the
H-differential of some GCP functions.
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Example 1.The following function is called the penalized
Fischer-Burmeister function [4]

φλ (a,b) := λ φFB(a,b)+ (1−λ )a+b+ (7)

where φFB is called Fischer-Burmeister function,
a+ = max{0,a} and λ ∈ (0,1) is a fixed parameter. In
this paper, we will consider the following GCP function:

Φ(x̄) = φλ ( f (x̄),g(x̄)) := λ φFB( f (x̄),g(x̄))
+(1−λ ) f (x̄)+g(x̄)+.

(8)

and its merit function associated to GCP function at ¯x is

Ψ(x̄) =
1
2
||Φ(x̄)||2

where

Φi(x̄) = φλ ( fi(x̄),gi(x̄)) := λ φFB( fi(x̄),gi(x̄))
+(1−λ ) fi(x̄)+gi(x̄)+.

(9)

Let f : Rn → Rn andg : Rn → Rn be H-differentiable
functions at ¯x ∈ Rn with H-differentials,Tf (x̄) andTg(x̄),
respectively.

A similar analysis can be carried out for the GCP
function in (9). Let

J(x̄) = {i : fi(x̄) = 0= gi(x̄)} and
K(x̄) = {i : fi(x̄)> 0, gi(x̄)> 0}.

A straightforward calculation shows that theH-differential
of Φ in (9) is given by

TΦ (x̄) = {VA+WB: (A,B,V,W,d) ∈ Γ },

whereΓ is the set of all quadruples(A,B,V,W,d) with A∈
Tf (x̄), B∈ Tg(x̄), ||d||= 1,V = diag(vi) andW = diag(wi)
are diagonal matrices with

vi =























































λ

(

1− fi (x̄)
√

fi (x̄)
2+gi (x̄)

2

)

+(1−λ )gi (x̄) wheni ∈ K(x̄)

λ
(

1− Aid√
(Aid)2+(Bid)2

)

wheni ∈ J(x̄)

and(Aid)2+(Bid)2 > 0

λ

(

1− fi (x̄)
√

fi (x̄)
2+gi (x̄)

2

)

wheni 6∈ J(x̄)∪K(x̄)

arbitrary wheni ∈ J(x̄) and(Aid)2+(Bid)2 = 0,

wi =























































λ

(

1− gi (x̄)
√

fi (x̄)
2+gi (x̄)

2

)

+(1−λ ) fi (x̄) wheni ∈ K(x̄)

λ
(

1− Bid√
(Aid)2+(Bid)2

)

wheni ∈ J(x̄)

and(Aid)2+(Bid)2 > 0

λ

(

1− gi (x̄)
√

fi (x̄)
2+gi (x̄)

2

)

wheni 6∈ J(x̄)∪K(x̄)

arbitrary wheni ∈ J(x̄) and(Aid)2+(Bid)2 = 0.

Example 2.Suppose thatf andg areH-differentiable at ¯x
with H-differentials, respectively, byTf (x̄) and Tg(x̄).
Consider the following GCP function which is the basis
of generalization of the Fischer-Burmeister function [2],
[3]:

φp(a,b) := a+b−‖(a,b)‖p (10)

wherep is any fixed real number in the interval(1,+∞)
and‖(a,b)‖p denotes thep-norm of(a,b), i.e.,‖(a,b)‖p=
p
√

|a|p+ |b|p.
Now we give theH-differentials ofΦp. Let

J(x̄) := {i : fi(x̄) = 0= gi(x̄)}.

TheH-differential ofΦp at x̄ is given by

TΦp(x̄) = {VA+WB: (A,B,V,W,d) ∈ Γ },

whereΓ is the set of all quadruples(A,B,V,W,d) with A∈
Tf (x̄), B∈ Tg(x̄), ‖d‖= 1,V = diag(vi) andW = diag(wi)
are diagonal matrices satisfying the conditions:

|1− vi|
p

p−1 + |1−wi|
p

p−1 = 1, ∀i = 1,2, . . . ,n,

and

vi =























1− | fi (x̄)|p−1sgn( fi (x))

(| fi (x̄)|p+|gi (x̄)|p)
p−1

p
i /∈ J(x̄),

1− |Ai d|p−1sgn(Ai d)

(|Ai d|p+|Bi d|p)
p−1

p
i ∈ J(x̄) and|Aid|p+ |Bid|p > 0,

arbitrary i ∈ J(x̄) and|Aid|p+ |Bid|p = 0,

(11)

wi =























1− |gi (x̄)|p−1sgn(gi (x̄))

(| fi (x̄)|p+|gi (x̄)|p)
p−1

p
i /∈ J(x̄),

1− |Bi d|p−1sgn(Bi d)

(|Ai d|p+|Bi d|p)
p−1

p
i ∈ J(x̄) and|Aid|p+ |Bid|p > 0,

arbitrary i ∈ J(x̄) and|Aid|p+ |Bid|p = 0.

(12)

Remark.The calculation in two illustration relies on the
observation that the following is anH-differential of the
one variable functiont 7→ t+ at anyt̄:

△(t̄) =







{1} if t̄ > 0
{0,1} if t̄ = 0
{0} if t̄ < 0.

In the following theorem we will minimize the merit
function underP0-conditions and the proof will be similar
to Theorem 5 in [25].

Theorem 4.Suppose f: Rn → Rn and g : Rn → Rn are
H-differentiable atx̄ with H-differentials, respectively, by
Tf (x̄) and Tg(x̄). SupposeΦ is a GCP function of f and g.
Assume thatΨ := 1

2||Φ||2 is H-differentiable at̄x with an
H-differential given by

TΨ (x̄) = {Φ(x̄)T [VA+WB] : A∈ Tf (x̄),B∈ Tg(x̄),V = diag(vi),
and

W = diag(wi), with vi wi > 0 wheneverΦi(x̄) 6= 0}.

Further suppose that Tg(x̄) consists of nonsingular
matrices and S(x̄) consists of P0-matrices where
S(x̄) := {AB−1 : A ∈ Tf (x̄),B ∈ Tg(x̄)} .
Then 0∈ TΨ (x̄)⇔ Φ(x̄) = 0.
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As consequences of the above result, one can state a
general result for any GCP function, but for the sake of
simplicity, we state the results for GCP function which is
based on generalized Fischer-Burmeister function,
Tf (x̄) = {∇ f (x̄)} andTg(x̄) = {∇g(x̄)}.

Corollary 7.Suppose f: Rn → Rn and g : Rn → Rn are
Fréchet differentiable at̄x. SupposeΦ is a GCP function
of f and g, which is the basis of generalized
Fischer-Burmeister function andΨ := 1

2||Φ||2. If ∇g(x̄)

is a nonsingular matrix and the product∇ f (x̄)∇g(x̄)−1 is
P0-matrix, thenx̄ is a local minimizer toΨ if and only ifx̄
solves GCP( f ,g).

Corollary 8.Suppose f: Rn → Rn and g : Rn → Rn are
Fréchet differentiable atx̄. Assume g is continuous,
one-to-one, onto and∇g(x̄) is a nonsingular matrix.
Moreover, assume f and g are relativelyP0-functions.
SupposeΦ is a GCP function of f and g, which is based
on generalized Fischer-Burmeister function and
Ψ := 1

2||Φ||2. Thenx̄ is a local minimizer toΨ if and only
if x̄ solves GCP( f ,g).

Proof. Sinceg is a one-to-one and onto, andf andg are
relativelyP0-functions, by Lemma1, the mappingf ◦g−1

is P0-function which implies∇ f (x̄)∇g(x̄)−1 is P0-matrix.
The proof follows from Corollary7. ⊓⊔

It is known that a continuous, strongly monotone
mapping f : Rn → Rn is a homeomorphism fromRn onto
itself and the∇ f (x̄) is positive definite matrix iff is C1

(see [13]). So we have the following.

Corollary 9.Suppose f: Rn → Rn and g : Rn → Rn are
Fréchet differentiable at̄x. Assume g is continuous and
strongly monotone. Moreover, assume f and g are
relativelyP0-functions. SupposeΦ is a GCP function of f
and g, which is based on generalized Fischer-Burmeister
function andΨ := 1

2||Φ||2. Thenx̄ is a local minimizer to
Ψ if and only ifx̄ solves GCP( f ,g).

In view of subsection 2.1, Theorem4, and Corollary5, we
get the following.

Corollary 10.Suppose f: Rn → Rn and g: Rn → Rn are
semismooth (piecewise smooth or piecewise affine) atx̄
with Bouligand subdifferentials, respectively, by∂B f (x̄)
and∂Bg(x̄). Assume g is continuous, one-to-one, onto and
∂Bg(x̄) consists of nonsingular matrices. Moreover,
assume f and g are relativelyP0-functions. SupposeΦ is
a GCP function of f and g, which is based on generalized
Fischer-Burmeister function andΨ := 1

2||Φ||2. Thenx̄ is
a local minimizer toΨ if and only ifx̄ solves GCP( f ,g).

Concluding Remarks Our goal of this article is to give
characterization of relatively P(P0)-properties in
nonsmooth functions when the underlying functions are
H-differentiable.

We illustrate the usefulness of our results by applying
these results a generalized complementarity problem
corresponding toH-differentiable functions, with an

associated GCP functionΦ and a merit function
Ψ(x) = 1

2||Φ||2.
To the best of our knowledge, when the underlying

functions are continuously differentiable (locally
Lipschitzian, semismooth, and directionally
differentiable) functions, our characterizations are new
for relatively P(P0)-properties, and generalization to
characterizations forP(P0)-properties. For example,
when g(x) = x and f is C1 (in which case we can let
Tf (x̄) = {∇ f (x̄)}), our characterizations of relatively
P(P0)-properties reduce to characterization of
P(P0)-properties in [19]. Moreover, GCP( f ,g) reduces to
nonlinear complementarity problem NCP( f ) and the
results of this paper will be valid for NCP( f ) as
applications. In view of Subsection2.1, we have the
following:

–If f andg areC1 in which caseTf (x̄) = {∇ f (x̄)} and
Tg(x̄) = {∇g(x̄)}, our results will be true when the
underlying functions areC1.

–If f andg are locally Lipschitzian withTf (x̄) = ∂ f (x̄)
andTg(x̄) = ∂g(x̄), respectively, our characterizations
will be valid and applicable to GCP( f ,g) when the
underlying data are locally Lipschitzian.

–If f and g are semismooth (in particular, piecewise
affine or piecewise smooth) with the Bouligand
subdifferentialTf (x̄) = ∂B f (x̄) and Tg(x̄) = ∂Bg(x̄),
respectively, our characterizations will be valid and
applicable to GCP( f ,g) when the underlying data are
semismooth.
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