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Abstract: For H-differentiable functionf from a closed rectangl® in R" into R, a result of Song, Gowda and Ravindran [On
Characterizations d?- andPg-Properties in Nonsmooth Functions. Mathematics of OpmratResearch. 25: 400-408 (2000)] asserts
that f is aP(Pg)— function onQ if the Ho-differential To(x) at eachx € Q consisting ofP(Pg)— matrices. In this paper, we introduce
the concepts of relativellf(Pg) — properties in order to extend these results to nonsmoottiturs when the underlying functions are
H-differentiable. We give characterizations of relativeljPy)— of vector nonsmooth functions. Also, our results give cbedzations

of relatively P(Pg)— when the underlying functions a@!-functions, semismooth-functions, and for locally Lipiegian functions.
Moreover, we show useful applications of our results byrgjvllustrations to generalized complementarity problems

Keywords: H-Differentiability, semismooth-functions, locally Lipkitzian, generalized JacobiaR(Py)— properties, generalized
complementarity problems.

1 Introduction generalization to every monotone (strictly monotone)
function.
In this article, we give characterizations of relativély . o i
andPy— properties in nonsmooth functions. For functions ~ Fiedler and RiK in [6] showed that for an affine
f,g: Q C R"— R", we say thatf andg are relatively ~function f(x) = Mx+ g, Po(P)—-property onR" is
Po(P)-functions if, for anyx # y in R", equivalent to M being Po(P)— matrix. for Fréchet
differentiable functionf on a closed rectangl®, Gale
and Nikaid [7/] gave a characterization &Fproperty, i.e.,
max [f(x)— f(y)]i[g(x) —g(y)li >0(>0). (1) if the Jacobian matrixJf(x) is aP- matrix at allx € Q,
{iniyi} then f is is a P— function. Subsequently, Moré and
Rheinboldt [L3] gave a characterization d¥;—property,
i.e., the Jacobian matriXf (x) is aPp— matrix onQ if and
only if f is is aPp— function onQ. In [19], Song, Gowda,

If g(x) = x, then relatively Po(P)-functions reduce to
Po(P)-function, i.e., we say that is a Po(P)-function if,

for anyx #yin Q. and Ravindran extended above results and characterized
W) _ _ Po— and P—properties when the underlying function is
{ifQ%}(X WiILF) = F¥)li =0 (> 0). (2) H-differentiable. Moreover, they illustrated these

characterizations to nonlinear complementarity problems
A matrix M € R™" is said to be &y(P)-matrix if the  Motivated from the above results, we raise the following
function f(x) = Mx is a Po(P)-function or equivalently, questions: Can we extend th#&(P)-function in @) in
every principle minor ofM is nonnegative (respectively, order to give general characterizations when the
positive [B]). Po(P)- functions have attracted many underlying functions areH-differentiable? Are these
researchers in the areas of complementarity and (boxgharacterizations useful in the area of complementarity
variational inequality problem, see e.gl([ and the problems, and variational inequalities? This paper
references therein. It is known th&(P)-function is a  answers these questions. We introduce the concepts of
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relatively P(Pg)— properties and give characterizations of H-differential of F at % if for every sequencéx} C Q
these concepts under appropriate conditions. Moreovegonverging to , there exist a subsequen¢gti} and a
we show the usefulness of these characterizations bynatrix Ac T(x*) such that

giving some llustrations to generalized complementarity

problems when the underlying functions &&functions, FOM) —F(x) — A —x) = 0(||x‘j< —x). (4
semismooth-functions, locally Lipschitzian functionsda
H-differentiable. We say that F is H-differentiable at*xf F has an

H-differential at X.

Remarkit is shown that in 24 if a function

F: Q C R" — R"is H-differentiable at a poink, then

there exist a constaht > 0 and a neighbourhods8|(x; 9)
d of X with

2 Preliminaries

Throughout this paper, we regard vector&ihas column
vectors. Vector inequalities are interprete
componentwise. For a s C R", coK denotes the
convex hull ofK andK denotes the closure &f[17]. For
a differentiable functiorf : R" — R™, Of(X) denotes the Conversely, if conditiond) holds, therT (x) := R™" can
Jacobian matrix off atx. For a matrixA, A denotes the o taken as ahi-differential of F at x. We thus have, in
ith row of A. (5), an alternate description éf-differentiability.

Clearly any function locally Lipschitzian atwill satisfy
Definition 1.A function ¢ : R2 — R is called a GCP $5)' Forrealll valued functions, conditioB)(is known as the
function if @(a,b) = 0 < ab= 0,a > 0,b > 0. For the calmness’ ofF atx. This concept has been well studied in
problem GCR¥,g), we define the literature of nonsmooth analysis (s&8][ Chapter 8).

IF() —FX)Il <L[x=X], vxeB(x0).  (5)

1 Therest of this section shows the Fréchet derivative of
®(x) = [@(fL(%),91(x)) .. @(fi(x).6i(X) .. @(fn(X).9n(X)) | 'a Frechet differentiable function, the Clarke generalize
) ®3) Jacobian of a locally Lipschitzian function, the Bouligand

and, we call®(x) a GCP function for GCPY, g). subdifferential of a semismooth function, and the

C-differential of aC-differentiable function are particular

instances oH-differentials PJ.

Fréchet differentiable functions
2.1 H-differentiability and H-differentials LetE : R" — R™ be Fréchet differentiable at € R with

Fréchet derivative matrix (= Jacobian matrix derivative)
The concepts oH-differentiability and H-differentials ~ {CF (x*)} such that
were introduced in 9] to study the injectivity of
nonsmooth functions. It has been shown @j that the F(x) —F(x) — OF (X")(X—X") = o(|[x — x"[]).
Fréchet derivative of a Fréchet differentiable functitre , , i ) .
Clarke generalized Jacobian of a locally Lipschitzian 1hen F is H-differentiable with {F(x")} as an
function [1, the Bouligand subdifferential of a H-differential. ,
semismooth function 12, [14, [16, and the Locally Lipschitzian functions

C-differential of a C-differentiable function 15 are  |et F: Q C R" — R™ be locally Lipschitzian at each

examples of H-differentials. Any superset of an point of an open se@. Forx* € Q, define the Bouligand
H-differential is an H-differential, H-differentiability — subdifferential ofr atx* by

implies continuity, andH-differentials enjoy simple sum,

product and chain rules, se8][ The H-differentiable dsF (x*) = {lim DF(xk) X x XK e QF}
function need not be locally Lipschitzian nor directiogall

differentiable P2]. These concepts give useful and unified whereQg is the set of all points if2 whereF is Fréchet
treatments for many problems in optimization, differentiable. Then, the (Clarke) generalized Jacoblqn [
complementarity problems, and variational inequalities

when the underlying functions are not necessarily locally JF (X*) = codgF (x")
Lipschitzian nor semismooth, se,[[9], [19], [20], [21], , , )
[22], [23], [24], [25], [26], [27] . is anH-differential of F atx*.

) Semismooth functions
We now recall the following from Gowda and ) ) o )
Ravindran §]. Consider a locally Lipschitzian functida: Q C R" — R™

that is semismooth a& € Q [12], [14], [16]. This means
Definition 2.Given a function FE Q C R" — R™ whereQ for any sequence’ — x*, and forVi € aF (x¥),
is an open set in Rand X € Q, we say that a nonempty
subset Tx*) (also denoted by Fl[x*)) of R™" is an F(X) — F(X*) — Vil (XK = x*) = o(||X< = x*)).
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Then the Bouligand subdifferential
AF (X*) = {lim OF (x¢) : X — x* X< € Q).

is anH-differential of F atx*. In particular, this holds iF
is piecewise smooth, i.e.,
differentiable functions; : R” — R™ such that

F(x) € {Fi(x),F2(x),...,

C-differentiable functions
Let F : R" - R" be C-differentiable [5

F(x)} vxeR.

in a

Remark. The converse statements in Theordmare
usually false folP-conditions.

For Pg-conditions in Theoreml1, the converse
statements of Itenfa) and Item(c) are true, while the
converse statements of Itefb) and Item(d) may not

there exist continuouslyhold in general, seelf] and [19].

The following Lemma is needed in our subsequent
analysis.

Lemma 1Suppose fg: R"— R"and g is one-to-one and
onto. Define h R" — R" where h:= f og™L. Then f and

neighborhood of x*. This means that there is a compact g are relativelyPo(P)-functions if and only if h i$(P)-

upper semicontinuous multivalued mapping— T(x)
with x € D and T(x) ¢ R™" satisfying the following
condition at anya € D: ForV € T(x),

o([[x—all)-

Then, F is H-differentiable atx* with T(x*) as an
H-differential.

Remark The following simple example, is taken from
[22], shows that arH-differentiable function need not be
locally Lipschitzian nor directionally differentiable.
Consider orR,

F(x)—F(a)—V(x—a) =

F(x) = xsin(= )forx;éO andF (0) = 0.

ThenF is H-differentiable orR with

1
T(0)=[-1,1] and T(c) = {sin(= )——cos( )}forc#O.
We note thatF is not locally Lipschitzian around zero.
We also see thaf is neither Fréchet differentiable nor

directionally differentiable.

3 The relatively P(Pg)— properties in
nonsmooth functions

The following result L3], [19] will be useful in this paper.

Theorem 1f : R" — R" is a Py(P)-function, under each
the following conditions.

(a)f is Frechet differentiable on"Rand for every xc R",
the Jacobian matrixdf (x) is a Po(P)-matrix.

(b)f is locally Lipschitzian on Rand for every x R,
the generalized Jacobiandf(x) consists of
Po(P)-matrices.

(c)f is semismooth on"Rin particular, piecewise affine
or piecewise smooth) and for every R", the
Bouligand subdifferential dgf(x) consists of
Po(P)-matrices.

(d)f is H-differentiable on Rand for every xc R", an
H-differential T (x) consists oPg(P)-matrices.

function.

Proof.

Supposef andg are relativelyPo(P)— function, we
need to shovh is Py(P) function. Sinceg is one-to-one
and onto, for allx,y € R, there exist unique*,y* € R"
with x = g~1(x*) andy = g~1(y*). For allx* # y* € R",
we have

(<) = h(y")]T ¥ —yi = {

?( g(x ))—h(g(Y) I Q(X)—_Q(Y)]i
>0, '

() —

«Q
~~
x
~—"
|
«
<
=

(6)
the converse follows a similar argument.
The following proposition is given in19 for P—
matrices.

Proposition 1Let h: Q — R" be continuous wher€ is
open set in Rand H-differentiable at each pointe Q
with an H-differential F(X) consisting ofP— matrices.
Then there exists vectors u and v arbitrarily close to zero
such that

(u < 0and hx+u) <
()v > 0and hx+v) >

h(X);
h(X).

We recall that a continuous mapping is called a
homeomorphism if it is a one-to-one and onto mapping
and if its inverse mapping is also continuous.

The proof of the following theorem based on Proposition
1, is similar to the proofs of Theorem 3.4 ii]] and
Theorem 1in19].

Theorem 2Let Q be a rectangular in R Suppose
f:Q—= R and g: Q -+ R" are continuous and
H-differentiable atx with H-differentials, respectively, by
Ti(X) and Tyg(x). Suppose g is a homeomorphism. Let
h: Q — R" be continuous where b= f o g~ and
H-differentiable at each pointx € Q with an
H-differential T,(X) consisting ofP— matrices. Then h is a
P— function on Q, in particular, one-to-one. Moreover, f
and g are relativelyP-functions.

In view of Lemmal and Theoreml, we have the
following.
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Corollary 1.Let Q be a rectangular in R Suppose
f:Q—= R and g: Q -+ R" are continuous and
H-differentiable atx with H-differentials, respectively, by

Ti(X) and Ty(X). Suppose g is a homeomorphism. Let (i)h is aPo—

h:Q — R be continuous where h= f o g~ and
H-differentiable at each pointx € Q with an
H-differential T,(X) consisting ofP— matrices. Then f
and g are relativelyP-functions.

RemarkiNote that if g(x) = x in Corollary 1, we get
Theorem 1in19.

The following theorem characterizes the relativiefy-
property viaH-differentials.

Theorem 3Let Q be a rectangular in R Suppose fQ —
R" and g: Q — R" are continuous and H-differentiable at
x with H-differentials, respectively, by (X) and Ty(x). ¢

is @ homeomorphism. Letl§) — R" be continuous where
h:= f og~! and H-differentiable at each poirte Q with
an H-differential T,(x) consisting oPg— matrices. Then h
is aPg— function on Q.

RemarkiNote that if g(x) = x in Theorem2, we get
Theorem 2in19].

In view of Lemmal and Theorem2, we have the
following.

Corollary 2.Let Q be a rectangular in R Suppose
f:Q—=R and g: Q — R" are continuous and
H-differentiable atx with H-differentials, respectively, by
Ti(X) and y(X). g is a homeomorphism. Let:1QQ — R"
be continuous where = f o g1 and H-differentiable at
each pointx € Q with an H-differential F;(x) consisting
of Po— matrices. Then f and g are relativePy-functions.

Whenf andg are Fréchet differentiable in which case
Ti(x) = {Of(X)} and Ty(x) = {Og(x)}, we have the
following.

Corollary 3.Let Q be a rectangular in R Suppose
f:Q— R"and g: Q — R" are continuous and FEchet
differentiable on R and for every xe R", Fréchet
derivatives (= Jacobians), respectively, tbyf(x) and

h:= f og~! and locally Lipschitzian at each poimte Q
with generalized Jacobiardh(x) consisting of Py—
matrices. Then

function on Q.
(i f and g are relativelyPyp-functions.

Corollary 5.Let Q be a rectangular in R Suppose
f:Q—= R and g: Q - R'" are continuous and
semismooth on 'R(in particular, piecewise affine or
piecewise smooth) and for everyexR", the Bouligand
subdifferentials, respectively, bggf(Xx) and dsg(X).
suppose that g is a homeomorphism. Letqh— R" be
continuous where h= f o g~! and semismooth (in
particular, piecewise affine or piecewise smooth) at each
point x € Q with Bouligand subdifferentialdgh(x)
consisting oPy— matrices. Then

()h is aPg— function on Q.
(ii)f and g are relativelyPy-functions.

When g(x) = x in the above results, we get the
following.

Corollary 6.Under each of the following, fR" — R", is
P(Po)- function.

(a)f is Frechet differentiable on"Rand for every x R,
the Jacobian matrixJf (x) is a P(Pg)— matrix.

(b)f is locally Lipschitzian on Rand for every x R",
the generalized Jacobiad f(x) consists ofP(Pgy)—
matrices.

(c)f is semismooth on"Rin particular, piecewise affine
or piecewise smooth) and for every R", the
Bouligand subdifferentiabg f (x) consists ofP(Pg)—
matrices.

4 Some applications to generalized
complementarity problems

In this section, we present some applications to
generalized complementarity problems to illustrate the
usefulness of our results. We consider a generalized

h:Q — R" be continuous where = f og~! and Frechet
differentiable at each poink € Q with with Fréchet
derivative matrix (= Jacobian matrix derivative)lh(x)
consisting oPg— matrix. Then

()h is aPg— function on Q.
(ii)f and g are relativelyPo-functions.

In view of Subsection2.1, we have the following
corollaries.

Corollary 4.Let Q be a rectangular in R Suppose
f:Q— R"and g: Q — R" are continuous and locally
Lipschitzian and for every & R", generalized Jacobians,
respectively, bydf(x) and dg(x). suppose that g is a
homeomorphism. Let hQ — R" be continuous where

is to find a vectox € R" such that

f(x) >0, g(x) >0 and(f(x),g(x)) =0

wheref : R" - R" andg : R" — R" are H-differentiable
functions.

By considering an GCP functio® : R" — R"
associated with GCP(g) and the corresponding merit
function ¥ = %||CIJ||2 when the underlying function$
andg areH-differentiable. It should be recalled that

Y(x) =0« @d(x) = 0« X solves GCPf, g).

We now give the following illustrations to show the
usefulness of our results, but first we compute the
H-differential of some GCP functions.
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Example IThe following function is called the penalized
Fischer-Burmeister functior]

(7)
where @p is called Fischer-Burmeister function,

a; = max{0,a} andA € (0,1) is a fixed parameter. In
this paper, we will consider the following GCP function:

O(X) = @ ((X).9(3) == A gra( (3,9(3)
+(1- )X, 9,

and its merit function associated to GCP functiom &t ~—

@ (a,b):=Ags(ab)+(1-A)a, b,

(8)

1
W(x) = EIIQD(@H2
where

& (X = @ (fi(X),8(%) = Agks(fi(%),01(X)
+HA=2)fi(X), g(x),

Let f : R" - R"andg: R" — R" be H-differentiable
functions atx € R" with H-differentials, Ts (x) and Tg(X),
respectively.

A similar analysis can be carried out for the GCP
function in ©). Let

JX) ={i: fi(x) =0=gi(x)} and
K(X) = {i: fi(x) >0,gi(x) > 0}.

A straightforward calculation shows that tHedifferential
of @ in (9) is given by

(9)

To(X) = {VA+WB: (AB,V,W,d) T},

wherefl is the set of all quadruplés\, B,V,W,d) with A €
Tt (X), Be Ty(x), ||d]| =1,V = diag(v;) andW = diag(w;)
are diagonal matrices with

A1 ——% ) 4 (1-21)gi(X) wheni € K(X)
V0746 (92
_ Ad -
. A (1 OO wheni € J(x)
= and(Ad)?+ (Bid)? > 0
A1 ——% ) wheni ¢ JX) UK(X)
(R4 ()
arbitrary wheri € J(X) and(Aid)? + (Bid)? =0,
A1-——88 ) 4 (1-2)(X) wheni € K(X)
(9?49 (%)
_ Bid ;
" A (1 (Ad)2+(Bid)2) wheni € J(X)
=

and(Ad)?+ (Bid)? > 0

A1-——88_ ) wheni ¢ J(X)UK(X)
fi(X)?+gi(x)?
arbitrary  wheri € J(X) and(Ajd)? + (B;jd)? = 0.

Example 2Suppose thaf andg areH-differentiable atx
with H-differentials, respectively, byTt(X) and Tg(X).
Consider the following GCP function which is the basis
of generalization of the Fischer-Burmeister functi@h, [

[3]:
®p(ab):=a+b—|/(ab)lp (10)

wherep is any fixed real number in the intervél, +o)
and||(a,b)||p denotes thg-norm of(a,b), i.e.,||(a,b)| p =

¢/[ajP+ [bP.

Now we give theH-differentials of®p. Let
JX) ={i: fix) =0=gi(X)}.
TheH-differential of @, atxis given by
To,(X) = {VA+WB: (A,B,V,W,d) €T},

wherefl is the set of all quadruplé#\, B,V,W,d) with A€
T (X), Be Tg(x), ||d|| =1,V = diag(vi) andW = diag(w;)
are diagonal matrices satisfying the conditions:

1-v|P i |l-wPi=1 Vi=12,...n

and
1- LGRSO
b1
(1% (9IP+Igi (TIP) P

¢ 3(3.

— LdiP-1 '
V= 1o AAPESOMAD g3 and AP + [Bid]P > 0, 1
(145d|P+[Bid|P) P
arbitrary i € J(x) and|Ad|P+ |Bid|P =0,
- P-1sang (0 .
1 e gNg (;)J i¢ (%),
(\fi(x‘)\wgmx‘)\P)T
Wi =q q_ _IBdP ng'[B'pdj i € 3(%) and/Ad|P + [Bid|P > O, (12)
(|4ydIP+[BidlP) P~
arbitrary i € J(x) and|Ad|P + |Bid|P = 0.

RemarkThe calculation in two illustration relies on the
observation that the following is a-differential of the
one variable functioh+— t. at anyt:

{{1} ift>0
A=< {0,1}ift=0
{0} ift<o.

In the following theorem we will minimize the merit
function undeiP-conditions and the proof will be similar
to Theorem 5 in25].

Theorem 4Suppose £ R" — R" and g: R" — R" are
H-differentiable atx with H-differentials, respectively, by
Tt (X) and Ty(x). Supposep is a GCP function of f and g.
Assume tha := 1||®||2 is H-differentiable ak with an
H-differential given by

Ty(X) = {®(X)" VA+WB : A€ T¢(X),B € Ty(X),V = diag(vi),
and
W = diag(w;), with v, w; > 0 whenever®;(X) # 0}.

Further suppose that 41X) consists of nonsingular
matrices and &) consists of Pp-matrices where
S(X) {AB1 : A € T¢(X),B € Ty(X)}
ThenO0 € Ty(X) & @(x) =0.
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As consequences of the above result, one can state associated GCP functiom® and a merit function
general result for any GCP function, but for the sake of ¥ (x) = %||<D||2.
simplicity, we state the results for GCP function which is To the best of our knowledge, when the underlying
based on generalized Fischer-Burmeister functionfunctions are continuously differentiable (locally
Tr(x) ={0Of (X)} andTgy(x) = {0Og(X) }. Lipschitzian, semismooth, and directionally
differentiable) functions, our characterizations are new
for relatively P(Pp)-properties, and generalization to
. . . . characterizations forP(Pg)-properties. For example,
of f and g, which is the basis of generalized heng(x) = x and f is(Cl) (in which case we can let
Fischer-Burmeister function an# := 3||®||<. If Og(X) T¢(X) = [Of(X)}), our characterizations of relatively
is a nonsingular matrix and the produttf (X)0g(x) “is  P(Py)-properties reduce to  characterization  of
Po-matrix, thenx is a local minimizer tdV if and only ifx P(Po)-properties in 19]. Moreover, GCPf,g) reduces to
solves GCPf,g). nonlinear complementarity problem NCP and the
results of this paper will be valid for NGP) as
applications. In view of Subsectio@.1l, we have the
following:

Corollary 7.Suppose £ R" -+ R" and g: R" — R" are
Fréchet differentiable ax. Supposeb is a GCP function

Corollary 8.Suppose £ R" - R" and g: R" — R" are
Fréchet differentiable atx. Assume g is continuous,
one-to-one, onto andJg(X) is a nonsingular matrix. 1 )
Moreover, assume f and g are relativeBy-functions. —f f andg areC" in which caseTy (x) = {f(x)} and
Supposeb is a GCP function of f and g, which is based ~ Ta(¥) = {HJg(X)}, our results will be true when the
on generalized Fischer-Burmeister function and  underlying functions ar€*.

W := }||®|[2. ThenXis a local minimizer t&¢ ifand only ~ —If f andgare locally Lipschitzian withls (x) = 0 f (X)
if X solves GCFf,q). andTy(X) = dg(x), respectively, our characterizations
will be valid and applicable to GGP,g) when the

Proof. Sinceg is a one-to-one and onto, arfdandg are underlying data are locally Lipschitzian.
relatively Po-functions, by Lemmd, the mapping og~! -If f andg are semismooth (in particular, piecewise
is Po-function which impliesd f (x)Og(x) * is Pp-matrix. affine or piecewise smooth) with the Bouligand
The proof follows from Corollary. O subdifferential T (X) = dgf(X) and Tg(X) = dgg(X),

It is known that a continuous, strongly monotone  respectively, our characterizations will be valid and
mappingf : R" — R" is a homeomorphism frorR" onto applicable to GCPf,g) when the underlying data are
itself and theJf (X) is positive definite matrix iff is Ct semismooth.

(see [L3]). So we have the following.

Corollary 9.Suppose £ R" — R" and g: R" — R" are Acknowledgement
Fréechet differentiable ak. Assume g is continuous and
strongly monotone. Moreover, assume f and g areThjs research is supported in part by the Natural Sciences

reIativerPo-funCtions. Suppos@ is a GCP function of f and Engineering Research Council of Canada.
and g, which is based on generalized Fischer-Burmeister

function and¥ := %||CD||2. Thenx is a local minimizer to
W if and only ifx solves GCFf,g). References
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