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Abstract: The spatial dynamics of an optical ring phase-conjugated resonator with Standard chaos is presented. It is shown that this
behavior takes place when a specific chaos-generating element is introduced on the resonator. Assuming ray optics inside the cavity
with parametersp andθ for the effective distance to the optical axis and the angle to the same axis (beam’s divergence) respectively.
The matrix of a standard map generating device is found in terms of the specific map parameters, the state variables and theresonator
parameters. One interesting feature of these kind of systems is that allow to model different bigger and uncontrollablesystems, e.g.
ocean dynamics, weather, social and economical systems, among others; This feature is possible thanks to the parameters control
facility.
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1 Introduction

The standard map is the name of a specific
two-dimensional dynamic map that is useful for studying
the basic features of chaotic motion and it has been
played an important role in classical and quantum chaos.
This particular map can be derived directly from a
periodically kicked system (the kicked rotor) [1,2] The
map describes a situation when nonlinear resonances are
equidistant in phase space that corresponds to a local
description of dynamical chaos. Due to this property
various dynamical systems and maps can be locally
reduced to the standard map. Thus, this map describes a
universal behavior with divided phase space when
integrable islands of stability are surrounded by a chaotic
component. As in most dynamical maps, the effect of the
map represents the evolution of a real physical system in
time [2]. The physical system represented by the standard
map is the so-called kicked rotor. A rotor can be imagined
as a bead sliding in a frictionless manner around on a
circular wire. The kicked part comes from the fact that the
rotor is subjected to a driving force that comes at exactly
even intervals in time. In physical terms, the kick might
be delivered by an electromagnetic pulse, for example. To
make things as simple as possible, the driving force (that

is, the kick) always arrives from the same direction in
space, and with exactly the same intensity. The driving
force either speeds up or slows down the bead, depending
on where the bead happens to be at the moment the kick
arrives. In other words, even though the intensity of the
kick is always the same, and it always comes from the
same direction in space, the amount of the kick that is
absorbed by the bead in the form of a change of speed
depends on the position of the bead around the circle at
that instant. The relationship is expressed mathematically
through the map equations [1]. The most interesting
aspect of the standard map is not simply that it shows
chaos, but that it shows the most basic conditions under
which chaos can occur [3,4]. One of the most interesting
features of this kind of systems is that they can be applied
to optical resonators and, by these means; the system can
be easily studied due to the simply way that the
parameters can be changed in an optical cavity [5,6,7,8,
9]. This paper is organized as follows. After this
introduction, Section 2 presents some basic features of the
standard map when it is treated by the ABCD formalism,
Section 3 presents the theoretical problem and shows the
main characteristics of the map generation matrix and the
standard beams (i.e. beams that behave accordingly to a
standard map), Section 4 presents the numerical results
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and the discussion on the observed spatial dynamics at the
resonator’s output and Section 5 presents the conclusions.

2 The standard map as an optical mapping

The standard map is a non-linear, two-dimensional map
that obeys the following two difference equations:

pn+1 = pn+ ksin(θn), (1)

θn+1 = θn+ pn+1,

where pn andθn are takenmodulo2π . The variables
pn andθn determine the angular position of the stick and
its angular momentum after the n-th kick respectively.
The constantk measures the intensity of the kicks on the
kicked rotator [1]. In the proposed ring phase-conjugated
resonatorpn and θn means the vertical distance to the
optical axis and the angle to the same axis respectively.
Using matrix optics, the following relation can then be
used for calculating how these parameters are modified by
an optical element where the iterated quantities refer to
the beam after passing the optical component. From the
following general expression [10] holds:

[

pn+1
θn+1

]

=

[

A B
C D

]

×

[

pn
θn

]

(2)

Substituting Eq. (1) into Eq. (2) the obtainedABCD
standard map matrix system after some algebra becomes:

[

pn+1
θn+1

]

=

[

1 ksin(θn)
θn

1 ksin(θn)
θn

+1

]

×

[

pn
θn

]

(3)

This system will be utilized for the generation of
standard beams in the setup proposed in Fig.1.

The ring phase conjugated resonator setup shown is
composed by two ideal plain mirrors (M), by a
phase-conjugated mirror (PM), as well as by a
chaos-generating element separated by a distanced/2
between the two mirrors [11,12,13,14].

The matrices involved and used to describe the
propagation of a light beam in the optical resonator are:

for M

[

1 0
0 1

]

, for PM

[

1 0
0 −1

]

, for a translational distance

d

[

1 d
0 1

]

, and, finally, for an unknown Standard chaos

generating element matrix

[

a b
c e

]

[11]. Therefore, the total

transformation matrixABCD for a complete round trip is
calculated as follows [12]:

[

A B
C D

]

=

[

1 0
0 −1

][

1 d
0 1

][

1 d/2
0 1

][

a b
c e

]

· · · (4)

· · ·

[

1 d/2
0 1

][

1 0
0 −1

][

1 d
0 1

]

PM

M Md/2 d/2

d d

a

c

b

e

Fig. 1: Ring phase-conjugated laser resonator setup with an
intracavity chaos-generating element

Solving Eq. (4) the resulting matrix is:

[

A B
C D

]

=

[

a+ 3cd
2 b+ 3d

4 (2a+3cd+2e)
−c −

3cd
2 −e

]

(5)

If one does want the standard map dynamics
reproduced by a ray in a ring laser cavity, then, each
round trip a ray described by(pn,θn) undergoes in the
laser cavity has to be considered as an iteration of the
standard map equations [13]. Then, when the matrix
transformation, Eq. (2), and the coupled equations, Eq.
(1), that generates the standard map, are both taken into
consideration one obtains by inspection the following
equalities:

A = 1, (6)

B =
ksin(θn)

θn
, (7)

C = 1, (8)

D =
ksin(θn)

θn
+1. (9)

Then, the abce matrix of the standard chaos
generating element able to produce standard beams
consistent with the standard map are found by
substituting theABCD elements of Eq. (5) in the above
equalities (6) to (9), obtaining:
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a+
3cd
2

= 1, (10)

b+
3d
4

(2a+3cd+2e) =
ksin(θn)

θn
, (11)

c = −1, (12)

−
3cd
2

−e=
ksin(θn)

θn
+1. (13)

The solutions for the standard chaos matrix elements
abce, able to produce standard beams in terms of the
standard map are the following:

a = 1+
3d
2
, (14)

b =
ksin(θn)

θn
+d

[

3ksin(θn)

2θn
−

9d
4

]

, (15)

c = −1, (16)

e=
3d
2

−
ksin(θn)

θn
−1. (17)

Taking the solutions (14) to (17) for the abcematrix
elements into Eq. (4) the total transformationABCD
matrix for a round trip now has the elements given by (6)
to (9). Substituting in Eq. (2), we obtain the equations for
pn+1 andθn+1 as the standard map, Eq. (1), making the
problem reversible. As can be seen the matrix elements of
the chaos generating matrix depend on the standard map
parameterk, on the resonator main parameterd and on
the state variableθn.

It has to be noted that the used approximation is only
valid for an element thickness that tends to zero.

3 Standard beams: general case

The results given by equations (14) – (17) are only valid
for b ≈ 0. For a general case, the thickness of the chaos-
generating element has to be taken into account, so, Eq.
(4) becomes:

[

A B
C D

]

=

[

1 0
0 −1

][

1 d
0 1

][

1 d−b
2

0 1

]

· · · (18)

· · ·

[

a b
c e

][

1 d−b
2

0 1

][

1 0
0 −1

][

1 d
0 1

]

.

Therefore the round trip total transformation matrix
yields:

[

A B
C D

]

=

[

a− c
2 (b−3d) 1

4

[

2αb+3βd+b2c
]

−c 1
2 (bc−3cd−2e)

]

, (19)

whereα = (2−a−3cd−e) andβ = (2a+3cd+2e).

n
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Fig. 2: Estimation of the magnitude of matrix elementb of the
standard map generating device for a resonator withd = 1 and a
standard parameterk= 1 for the first 300 round trips.

Using Eq. (18) and Eqs. (6)–(9) the general standard
map chaos-generating matrix elements,abce, can be
calculated through the following expressions:

a = 2+
1
2

(

ksin(θn)

θn
± γ

)

, (20)

b =
ksin(θn)

θn
−3d+2± γ, (21)

c = −1, (22)

e=
1
2

(

2−
ksin(θn)

θn
± γ

)

, (23)

whereγ =

√

ksin(θn)
θn

(

ksin(θn)
4θn

+2
)

−3d+1.

Eqs. (20)–(23) are written taking into account the
thickness of the chaos-generating element by mean of the
translational distance between the element and the
mirrors, this distance is represented by(d− b)/2 in the
proposed system.

4 Numerical results

As it has been shown in the previous section, only thec
matrix element is constant, beinga, b ande dependent on
the state variableθn, on the standard map parameterk and
on the resonator main parameterd. It has to be noted that
all parameters are dimensionless.

Figure 2 shows the simulation results for the first 300
round trips of matrix elementb of the standard map
generating device for a resonator of unitary length (d = 1)
and map parameterk = 1, these parameters were found
using brute force calculations and they were selected due
to the matrix-elementb behavior. In a similar way, Fig.3
shows the simulation results for the first 300 round trips
of matrix elementb of the standard map generating
device for a resonator of length (d = 0.5) and a map
parameter k = 2. It should be noted, that several
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Fig. 3: Numerical results of the magnitude of matrix elementb of
the standard map generating device for a resonator withd = 0.5
and a standard parameterk= 2 for the first 300 round trips.

simulations were performed by varying the map
parameterk and the state variables obtaining qualitatively
the same complex behavior.

5 Conclusions

In this article it is shown how the introduction of a
particular map-generating device in a ring optical
phase-conjugated resonator can generate beams with the
behavior of a specific two-dimensional map. In particular
it is explicitly shown how the difference equations of
standard map can be used to describe the spatial
dynamical behavior of what it is called standard beams
i.e. beams that behave accordingly to the standard map
dynamics. The matrix elementsa, b, c and e of a
map-generating device are found in terms of the standard
map variablek, the state variableθn and the resonator
parameterd. To our knowledge this is the first time that
the mathematical characteristics of an intracavity optical
device inside a resonator are stated so that the standard
map dynamics is obtained as the spatial dynamics for the
output ray beams.
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