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Abstract: The fast growth of the web of linked data raises new challenges for distributed query processing. Different from traditional
federated databases, linked data sources cannot cooperatewith each other. Hence, sophisticated optimization techniques are necessary
for efficient query processing. In this paper, we formalize the problem of Basic Graph Pattern (BGP) optimization for federated
SPARQL queries over the Web of Linked Data. We define and analyze the characteristics of source selection for links based static
BGP optimization. The classes of bound subject and object associated with bound predicates of triple patterns are first used to select
the set of relevant sources. Then links between linked data are used to prune the relevant sources of triple patterns. With the FedBench
benchmark, we evaluate the performance of our approach of source selection for FedBench queries. The results of the evaluation show
the feasibility of our approach.
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1 Introduction

With the wide adoption of linked data principles, the
World Wide Web has evolved from a global information
space of linked documents to one where both documents
and data are linked[10]. A large amount of structural data
on the Web enable new types of applications which can
aggregate data from different data sources and integrate
fragmentary information from multiple sources to achieve
a more complete view. Answering queries across multiple
distributed Linked Data sources is a key challenge for
developing this kind of applications.

Federated querying over the distributed data sources
is called virtual data integration. User queries are
decomposed into several sub-queries that are distributed
to autonomous data sources which execute these
sub-queries and return the results which are integrated
locally. There are a high number of links in the Web of
Linked Data. Yet, so far, only little attention has been paid
to the effect of links between linked data on federated
querying.

In this paper, we focus onBasic Graph Pattern(BGP)
optimization for federated SPARQL queries over the Web
of Linked Data. In SPARQL, a BGP is a set of triple
patterns where a triple pattern is like an RDF triple except
that each of the subject, predicate and object may be
concrete (i.e. bound) or variable (i.e. unbound). Basic
Graph Patterns are fundamental to SPARQL queries and
other complex graph patterns can be constructed by BGP
using SPARQL logical operators(UNION, OPTIONAL).

Listing 1: Example SPARQL query with one single BGP

SELECT ? Drug WHERE{
1 ? Drug r d f : t ype dbped ia−owl : Drug .
2 ?y owl : sameAs ? Drug .
}

The problem we are going to tackle in this paper is
best explained by a simple example. Consider the BGP
displayed in Listing1 which represents a BGP of a
SPARQL query executed over RDF data describing the
life science domain. Assume thatD1, D2 andD3 are three
data sources over the Web of Linked Data, the first triple
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pattern is relevant toD1 and D2 and the second triple
pattern is relevant toD3. Typically, the final query
answers are obtained by the following steps: firstly, the
first triple pattern is respectively matched onD1 andD2
which respectively produce the result setS1 and S2, the
second triple pattern is matched onD3 which produces
the result setS3; then, the final query result set S is
generated by integrating these intermediate query results:
S= (S1∪S2)∩S3. If we have known that there are not
links betweenD2 andD3 by previous statistic information
of D1, D2 andD3, we can get the inference:S2∩S3 = /0.
Therefore, the remote request toD2 is useless. We can get
the final query result set S only by joiningS1 andS3.

This paper is an extension of our work presented in
[26]. In this paper, we presented the link-aware approach
for source selection in more detail. Besides, we also study
the join reordering of sub-queries and the way to execute
distributed join operations in federated SPARQL queries
over the Web of Linked Data.

Our main contribution presented in this paper is
fourfold. (1)We formalize the problem of Basic Graph
Pattern (BGP) optimization for federated SPARQL
queries over the Web of Linked Data. (2)We propose an
efficient approach of source selection. (3)We design an
efficient approach for executing distributed join
operations. (4)We perform comprehensive simulation
study based on FedBench benchmark to evaluate our
approaches.

The remainder of this paper is structured as follows.
In Section 2 we review related work. Section 3 we present
the background knowledge. Section 4 describes the
statistical model and the approach of source selection
based on it. The execution of join operations is presented
in Section 5. An evaluation of our approach is given in
Section 6. Finally, we conclude and discuss future
directions in Section 7.

2 Related Works

Related work can be divided into two main categories: (a)
source selection (b) query optimization.

2.1 Source Selection

DARQ [1] extends the popular query processor Jena ARQ
to an engine for federated SPARQL queries. It requires
users to explicitly supply a configuration file which
enables the query engine to decompose a query into
sub-queries and optimize joins based on predicate
selectivity. Stuckenschmidt [2] presents an index structure
called source index hierarchy which is used to determine
information sources that contain instances of a particular
schema path. Given a predicate path in a dataset, an index
hierarchy is constructed, where the source index of the
indexed path is the root element. Both two approaches

require predicates of triple patterns to be bound. SemWIQ
[3] requires all subjects of triple patterns to be variables
and for each subject variable its type must be explicitly or
implicitly defined. Additional information (another triple
pattern or DL constraints) is needed to tell the type for the
subject of a triple pattern. It uses these additional
information and extensive RDF statistics to decompose
the original user query. These requirements limit the
variety of user queries.

In other cases, users are required to provide additional
information to determine the relevant data sources. For
instance, [4] theoretically describes a solution called
Distributed SPARQL for distributed SPARQL query on
the top of the Sesame RDF repository. Users are required
to determine which SPARQL endpoint the sub-queries
should be sent to by the GRAPH graph pattern. The
association between graph names and respective
SPARQL endpoints at which they reside is explicitly
described in a configuration file. The W3C SPARQL
working group has defined a federation extension for
SPARQL 1.1 [5]. However, remote SPARQL queries
require the explicit notion of endpoint URIs. The
requirement of additional information imposes further
burden on the user. On the other hand, the proposed
approach hardly imposes any restrictions on user queries.

Recently, several attempts have been made to do
source selection without local statistics. FedX [6] asks all
known data sources by SPARQL ASK query form
whether they contain matched data for each triple pattern
presented in a user query. FedSearch [14] is based on
FedX and extends it with sophisticated static optimization
strategies. If the amount of known data sources is very
large(it is common in an open setting), the query
performance may leave much to be desired. SPLENDID
[7] relies on the VOID [22] descriptions existing in
remote data sources. However, a VOID description is not
an integral part of Linked Data principles [8].

The link-aware source selection approach was first
proposed by Stuckenschmidt [2]. They use predicate path
index hierarchies of datasets for source selection. This
approach requires predicates of triple patterns to be
bounded, and then limit the variety of user queries.
Another link-aware source selection approach is
presented in [13]. It decomposes original queries based on
general statistical models which form a local web of
linked classes. Its statistical models are class-based, and
the statistical models presented in this paper is
property-based which can flexibly make a compromise
between answer completeness and the time performance
of query engines. Acosta et al. [24] present ANAPSID, an
adaptive query engine that adapts query execution
schedulers to SPARQL endpoints data availability and
run-time conditions. Montoya et al. [25] extend the
ANAPSID framework by an approach for link-aware
source selection. Yet, this extension is based on evaluating
namespaces and sending ASK queries to data sources at
runtime. HiBISCuS [23] is an efficient hypergraph based
source selection approach for SPARQL query federation
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over multiple SPARQL endpoints. It identifies links
between linked data based on authorities of URIs. URIs
of classes defined by same data sources generally have
the same authorities. Compared to our approach,
HiBISCuS is more generic and usually over-estimate the
set of sources capable for answering a query.

2.2 Query Optimization

Research on query optimization has a long history in the
area of database systems. Concepts in these research areas
have been adopted to optimize queries on local RDF
stores. OptARQ [15] reorders triple patterns in SPARQL
queries based on their selectivity. Hartig [16] adapted the
query graph model (QGM) for SQL queries to represent
SPARQL queries. Based on SQGMs, SPARQL queries
are rewritten for optimization purpose. Due to the triple
nature of RDF data, optimization for queries on local
repositories has also focused on the use of specialized
indices to accelerate the join operations, e.g. [17].

In [1] Quilitz et.al have adopted some of existing
techniques from relational systems to federated SPARQL
queries. They present a cost based optimization for join
ordering. However, their estimation on the result size of
joins is inaccurate by simply setting the selectivity factor
for the join attributes to a constant. Because unbound
queries generally returning a large result set, other join
implementations are proposed as an alternative to local
nested-loop implementation of joins, such as pipeline join
[18] and semijoin [4]. While pipeline may produce too
many concurrent access to remote data sources, semijoin
tends to lead to program errors due to long query strings.
In this paper, we propose a novel way, called range join,
to execute join operations. By a factor, it can reach a
compromise between the amount of network traffic
sending to and downloading from remote data sources.

3 PRELIMINARY

For a better understanding, we develop the theory by
means of the example BGP displayed in Listing2 (i.e. the
WHERE clause of the FedBench Benchmark [6] Life
Science Query 5).

Listing 2: Example SPARQL query with one single BGP

1 ? drug r d f : t ype drugbank : d rugs .
2 ? drug drugbank : keggCompoundId ? keggDrug .
3 ? keggDrug b i o 2 r d f : u r l ? keggUr l .
4 ? drug drugbank : gener icName ? drugBankName .
5 ? cheb iDrug dc : t i t l e ? drugBankName .
6 ? cheb iDrug b i o 2 r d f : image ? cheb i Image .

A BGP in SPARQL is defined as follows:

Definition 1.A BGP is represented to be a graph G as a set
G of undirected connected graphs. For each pair(gi ,g j) ∈
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Fig. 1: Undirected connected graphg1 ∈ G (a) and DAG
dg for Listing 2 (b)

G , gi and gj are disconnected. A graph g is an ordered
pair (V,E), where V is a set of distinct triple patterns and
E is a set of distinct triple pattern pairs. For each pair
(vi ,v j) ∈ E, vi ∈ V,v j ∈ V, vi and vj share at least one
variable.

In Figure 1(a), we display the undirected connected
graphg1 ∈ G for the BGP in Listing2. As the BGP triple
patterns in Listing2 are (transitively) joined, the graph G
has only one component, thusG contains only the
connected graphg1. Note, that the numbers used for the
nodes ofg1 in Figure1(a) correspond to the numbers of
the triple patterns of the BGP in Listing2.

For a BGP B, links between linked data obviously do
not affect the source selection of pairwise disconnected
graphs (gi ,g j) ∈ G ; the execution order of pairwise
disconnected graphs(gi ,g j) ∈ G also does not affect
query performance as the overall result set corresponds to
the Cartesian product of the result sets forgi and g j .
Therefore, we can reduce the optimization problem for B
to the optimization of eachg ∈ G . In the following, we
focus on the optimization of connected graphsg∈ G .

Definition 2.An execution plan pg for g ∈ G is a well
defined order for the nodes of g. The setPg is the
execution plan space of g∈ G . An execution plan
pg ∈Pg is an element of the space.

An execution planpg ∈Pg can be represented as a
directed acyclic graph (DAG). We defineDg as the set of
directed acyclic graphs for the execution plans inPg.
Each DAG dg ∈ Dg represents one or more execution
planspg of an undirected connected graphg∈ G .

In Figure1(b)we show the DAG corresponding to the
execution planpg which executes the BGP of Listing2
top-down, i.e. the triple patterns are evaluated in the same
order as they are listed in Listing2. For any two nodes
(vi ,v j) ∈ dg, there is a directed path betweenvi andv j , if
(1) the triple patterns corresponding tovi and v j are
joined and (2)vi is executed first in the execution plan.
There is a clear relationship between the setPg of
execution planspg and the setDg of directed acyclic
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Fig. 2: The SRGu∈U of dg shown in Figure1(b)(a) and
The Pruning Result ofu∈U (b)

graphsdg. More formally, we can state the following
function f : pg −→ dg that is injective and not surjective.
Thus, an execution planpg can be mapped uniquely to a
DAG dg, whereas a DAGdg is an abstraction for one or
more execution planspg.

Definition 3.If each node (triple pattern) in the graph dg∈
Dg is attached a set of its relevant data sources, the new
graph is called the Source Relevance Graph (SRG) of dg,
written as s(dg).

We defineS (g) as the set of source relevance graphs
for the execution plans inPg; M(s(dg)) as the set
produced by matching triple patterns on their respective
relevant data sources and joining the matched data locally.
The Figure2(a) shows the SRG ofdg shown in Figure
1(b). For the sake of simplicity, we use predicate based
approach to determine relevant data sources of triple
patterns where FedBench datasets are taken as the set of
known data sources. If the bound predicate of a triple
pattern is used by a data source, then the triple pattern and
the data source are relevant.

Table 1: Statistics for single data source

No. Field Descriptions
1 predicate a predicate in a data source
2 domain a set of classes (the domain of the predicate)
3 range a set of classes (the range of the predicate)

Table 2: Links in one single data source

No. Field Descriptions
1 linkType the type of a link
2 startPredicate the start predicate
3 endPredicate the end predicate
4 intersection the intersection of the class set

Table 3: Links between data sources

No. Field Descriptions
1 linkType the type of a link
2 startPredicate the start predicate
3 endPredicate the end predicate
4 intersection the intersection of the class set
4 startDS the data source of the start point of the link
4 endDS the data source of the end point of the link

4 Source Selection

Given a graphg ∈ G , the matched data ofg can be
obtained by the following steps. Firstly, the SRG ofg is
constructed using previous statistics of known data
sources. Then, triple patterns are respectively matched
over their relevant data sources; the matched data for one
single triple pattern is the union of all matched data from
its relevant data sources. Finally, all matched data of triple
patterns are joined into the matched data ofg locally.
Because that join operations are executed on the local
mediator, this process generally needs a large number of
network traffic and remote requests.

Source selection and distributed join operations are
two key factors affecting the number of network traffic
and remote requests. The approach for executing
distributed join operations is presented in Section 5. Our
approach for source selection includes two stages. The
first stage has the aim of selecting relevant data sources
for each single triple pattern, i.e. determining data sources
that may contain matched data of one single triple pattern.
The second stage has the aim of selecting relevant data
sources for the whole BGP, i.e. excluding relevant data
sources of triple patterns that potentially have no
contributions for the final query answers.

4.1 Statistics

The need for customized summary statistics of RDF data
for our purpose of BGP optimization is motivated by at
least the following two arguments. Firstly, the relevant
data source set of one single triple pattern is selected, i.e.
constructingS (g) of g ∈ G . Secondly, the SRGs of
s(dg) ∈S (g) are pruned. For this purpose, we build three
kinds of statistics for each known data source.
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In Table 1 we show the statistics for single data
source. Firstly, the property setP of a dataset is collected.
Then, for each propertyp∈ P, we compute its domain D
and range R: (1)The subject ofp is a URI. Its classes are
generally defined in the data source hosting it. We
compute the domain ofp by the SPARQL query:
SELCET different(?d) WHERE{?s p ?o. ?s rdf:type ?d}.
(2)The object ofp is a URI or Literal. Its classes are
defined in the data source hosting it or other data sources.
The range ofp is computed by the SPARQL query:
SELCET different(?r) WHERE{?s p ?o. OPTIONAL{?o
rdf:type ?r}}. If the object ofp is a URI and its classes
are not defined by the current data source, the its classes
are computed by dereferencing the URI. (3) URIs which
classes not explicitly defined by rdf:type are assigned
with the common class rdfs:Resource. For literals, the
more specific the classes (data types) are divided, the
more accurate the source selection will be. In this paper,
we just assign literals with the common class rdfs:Literal.
Finally, a predicate tuple D, p,R is constructed for each
p∈ P.

For each pair((D1, p1,R1),(D2, p2,R2)), if one of
2|D1∩D2|
|D1|+|D2|

≥ α, 2|D1∩R2|
|D1|+|R2|

≥ α, 2|R1∩D1|
|R1|+|D1|

≥ α and
2|R1∩D2|
|R1|+|D2|

≥ α is true, a link with a corresponding type is
built, where α is a positive real number denoting the
overlap ratio of two sets. The information of links in one
single data source and links between data sources is
respectively shown in Table2 and Table3.

4.2 Source Selection Approach

Given a BGP B, we first select relevant data sources for
each triple pattern. The only available information for this
process is the bound parts (non-variable) of triple
patterns. According to the statistical model shown in
Table1, we tackle the bound subjects and objects of triple
patterns as follows: (1)For a URI, its classes can be
obtained by directly dereferencing it. If the classes of the
URI can not be obtained, rdfs:Resource is the default
one.(2)For a Literal, we assign it with a common class
rdfs:Literal. Next, the set of relevant data source is
determined by matching these information on statistics of
known data sources.

Assume thatt : (st , pt ,?ot) is a triple pattern with a
bound subject and predicate,St is the set of classes ofst , a
tuple pattern up = (St , pt ,?o) is constructed. The
predicate tupleu = (D, p,R) of DS matchesup if and

only if pt = p and 2|D∩St |
|D|+|St |

≥ α. The factorα has the same
meaning presented above subsection. Ifup and u are
matched thent andDSare relevant.

4.3 Pruning Algorithm

Given the setS (g) of g ∈ G , eachs(dg) ∈ S (g) is
pruned by removing potentially having no contributions

to the matched data ofg. In Algorithm 1, we provide the
pseudo-code for the core optimization algorithm. The
algorithm tests for each relevant data source of a triple
pattern whether it has contributions to the results that the
triple pattern join with other triple patterns (line 1-20);if
all test results for a relevant data source of a triple pattern
are false then removing the data source from the relevant
data source set of the triple pattern (line 16-18). If there
are no other triple patterns can produce results by joining
with a triple pattern on a data source, then the data source
is excluded from the relevant data source set of the triple
pattern (21-23). Note that if the relevant data source set of
any nodes ins(dg) becomes empty after pruning then
removing s(dg) from Sg. The algorithm returns the
pruneds(dg) as the result.

Algorithm 1 Prune the Source Relevance Graph thes(dg)
of pg ∈Pg

1: s(dg)←GenerateDAG(pg)

2: s
′
(dg)←Copy(s(dg))

3: for i=1 to size(pg) do
4: vi ← Node(pg[i])
5: startSet←GetRelevantSources(vi)
6: E←OutgoingEdges(vi)
7: for eachss∈ startSetdo
8: endTemp←∅

9: for eache∈ E do
10: v j ← TargetNode(e)
11: t pLink←GetLinkType(e)
12: endSet←GetRelevantSources(v j)

13: ess= GetDataSourcesByLink(endSet, t pLink,ss)
14: VistSources(v j ,ess)
15: endTemp← endTemp+ess
16: end for
17: if endTemp=∅ then
18: RemoveRelevantSource(s

′
(dg),vi ,ss)

19: end if
20: end for
21: end for
22: for eachv∈ Nodes(s

′
(dg)) do

23: RemoveNotVistedSources(v)
24: end for
25: return s

′
(dg)

In Figure 2(b) we show the pruneds(dg) ∈ S (g)
based on links between FedBench datasets according to
algorithm1. For the edge (1,2) and (1,4), a typeSSlink
only exists in Drugbank with respect to relevant data
sources of node 1, 2 and 4. Hence, only Drugbank is
considered to be relevant for node 1. For the edge (4,5),
Drugbank has the typeOO links only towards KEGG.
Therefore, Jamendo and SWDogFood are removed from
the relevant data source set of the node 5.M(s(dg)) is
equal to M(s

′
(dg)). However, the network traffic

concerningM(s(dg)) is far more than the one concerning
M(s

′
(dg)).
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5 Optimization for Join Operations

Query optimization is a fundamental and crucial subtask
of query execution in database management systems.
While query optimization for a single database focus on
join reordering of triple patterns, query optimization in
distributed environments is a more sophisticated task. The
optimization goal is to find the execution plan which is
expected to return the result with minimum remote
requests and network traffic.

Given a setS (g) and for eachs(dg) ∈S (g) has been
pruned, the matched dataM(g) of g is the union ofM(s(dg)
for all s(dg) ∈S (g). The aim of the optimization for join
operations is to find the optimalpg ∈Pg−→ dg to compute
theM(s(dg) with minimum cost w.r.t. network traffic.

5.1 Join Reordering

To minimize costs of network traffic, if a group of triple
patterns share a set of relevant data sources then these
triple patterns should be sent as a whole to the respective
relevant data sources, i.e. the idea of theexclusive groups
presented in [6]. Hence, the task for join reordering is to
find the optimal order for joining a set of groups of triple
patterns.

Algorithm 2 Join Order Optimization

1: GS←{gs1,gs2, . . . ,gsn}
2: orderedGS←∅

3: while GS6=∅ do
4: mincost←+∞
5: for eachgs∈GSdo
6: cost← joinCost(gs, preGS)
7: if cost< mincostthen
8: temp← gs
9: mincost← cost
10: end if
11: end for
12: orderedGS← append(orderedGS, temp)
13: GS←GS−{temp}
14: end while
15: return orderedGS

In Algorithm 2, we provide the pseudo-code for the
join order optimization algorithm. The algorithm is a
variation of the variable counting technique proposed in
[12]. It determines the group of triple patterns with lowest
cost from the remaining items (line 4-11) and appends it
to the tail of the ordered list (line 12). For cost estimation
(line 6) the number of free variables is counted
considering already bound variables, i.e., the variables
that are bound through a join argument that is already
ordered in the ordered list.

5.2 Join Execution

By computing the joins through buffering the obtained
variable binding sets and sends them in a batch as value

constraints to remote SPARQL endpoints, i.e., as a
distributed semijoin, it is possible to reduce the number of
requests and network traffic. The range of a join variable
binding set is divided into some equal-width section. Not
all bound values of the join variable but the breakpoints of
the range are used to construct value constraints. The
overall idea of this optimization is to provide a way to
reach a compromise between the amount of network
traffic sending to and downloading from remote data
sources. We propose therange jointechnique and discuss
the technical insights below.

In the following, we illustrate range join processing
for the join triple pattern t1 : (s1 p1 ?o1) and
t2 : (?o1 p2 ?o2). For the example,t1 is first executed and
the bound value sequence of ?o1 is B = (b1,b2, ...,bn)
whereb1 ≤ b2 ≤ ·· · ≤ bn; the set B is divided into m
sections: ((b1, . . . ,bn/m), (bn/m, . . . ,b2n/m),. . . ,
(b(m−1)n/m, . . . ,bn)); the value constraints oft2 are
constructed as(b1≤?o1≤ bn/m) OR (bn/m <?o1≤ b2n/m)
OR . . . OR (b(m−1)n/m <?o1 ≤ bn); Finally, t2 attached
with the value constraints is sent to its relevant data
sources.

Obviously, the range join is equal to the original
implementation of semijoin [4] whenm= 1 and is equal
to the pipeline join [18] when m= n. Therefore, we can
adjust the value of m to reach a compromise between the
amount of network traffic sending to and downloading
from remote data sources. The selection of the optimal
value of m is a little difficult. It needs the information of
data distribution in data sources. For our setup, we just set
the value of m to 10.

6 EXPERIMENTAL STUDY

We have developed a prototype system(LDMS3)
implementing the proposed approaches and conducted an
experimental study to empirically analyze the
effectiveness of it compared with several existing
federated SPARQL query systems.

Our evaluation is based on FedBench4[9]. In contrast
to other SPARQL benchmarks[19,20], FedBench focus
on testing and analyzing the performance offederated
query processing strategies on semantic data. It includes
two subsets of data sources in the Linked Data cloud:
Cross Domain(DBpedia, NYTimes, LinkedMDB,
Jamendo, GeoNames) and Life Sciences(KEGG,
Drugbank, ChEBI, DBpedia). For each data set, it defines
seven queries. The overview of the data sets is shown in
Table4(a) in terms of number of triples(#Triples), size of
statistical models and time taken to create them in
hh:mm:ss. Queries are shown in Table4(b) in terms of

3 LDMS is available as Java source
code(eclipse project) from the SVN repository:
https://svn.code.sf.net/p/semwldms/code/LDMS/trunk

4 FedBench can be downloaded at
http://code.google.com/p/fbench/
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Table 4: FedBench datasets and queries used for the
evaluation.

(a)

Dataset #Triples SM Size SM Time

DBpedia 43.6M 332KB 01:01:18
NYTimes 335k 10KB 00:00:27
LinkedMDB 6.15M 36KB 00:07:36
Jamendo 1.05M 3KB 00:00:12
Geo Names 108M 7KB 02:04:47
SW DogFood 104k 64KB 00:00:30
KEGG 1.09M 4KB 00:01:30
Drugbank 767k 19KB 00:01:12
ChEBI 7.33M 3KB 00:04:12

(b)
Query #BGPs #Patterns #Results

CD1 2 3 90
CD2 1 3 1
CD3 1 5 2
CD4 1 5 1
CD5 1 4 2
CD6 1 4 11
CD7 1 4 1
LS1 2 2 1159
LS2 2 3 333
LS3 1 5 9054
LS4 1 7 3
LS5 1 7 393
LS6 1 5 28
LS7 2 5 144

number of BGPs and patterns in the WHERE clause and
size of results.

The data server was set up using OpenRDF Sesame
framework which provides a query service (SPRAQL
endpoint) for each data source. Benchmark datasets
simulated on the same physical host and were
respectively loaded as a single repository with the type of
Sesame Native Store. The prototype system(i.e. test
client) was on a Windows XP with two Dual-Core Intel
Xeon processors (2.8 GHz) and 3GB memory. The server
was running a 64 Bit Debian Linux Operation System
with two Intel Xeon CPU E7530 processors (each with
twelve cores at 2 GHz), 32 GB main memory. The
statistical models for data sources were loaded into
memory when starting the system.

6.1 Evaluation of Source Selection

First, we show the result of evaluation of source selection.
Assume thatN andNe respectively are the total number of
sources in the data and the number of sources that are
actually accessed for answering a query, we defineNe

N is
the precision for source selection. The precision measures
the quality of source selection. In other words, the
precision gives an idea that how much costs we take for
answering a query when not losing the recall of results.
The source selection factorα was set to 1, i.e. a link
between two predicate tuples is constructed when the
corresponding two sets are equal.

Table 5: Comparison of precision (%) for source selection

Query DARQ SPLENDID FedX ANAPSID HiBISCuS LDMS
CD1 10 10 30 10 75.6 75.6
CD2 33.7 100 100 33.7 100 100
CD3 25 100 12.5 33 75.6 100
CD4 16.7 100 1.56 12.5 50 100
CD5 33.3 100 12.5 25 100 100
CD6 33.3 5.56 5.56 12.5 75.6 100
CD7 33.3 25 3.125 37.5 50 100
LS1 100 100 100 100 100 100
LS2 10 10 10 12.5 25 50
LS3 25.6 100 12.5 25 95 100
LS4 51.5 100 100 13.5 100 100
LS5 26.5 12.5 12.5 16.2 100 100
LS6 25 12.5 12.5 36.6 75.6 100
LS7 35 75 37.5 35 100 100
Avg. 23.78 67.9 31.77 28.79 80.17 94.69
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Fig. 3: The Comparison of Time Performance with other
state-of-the-art Federated SPARQL Query Systems

Table5 shows the precision for FedBench queries. We
observe an avg. precision of 94.69% for LDMS. It means
that only 5.31% useless remote requests during answering
queries by LDMS. The high precision shows that our
approach is very well suited to prune the space of
execution plans for all queries. LDMS and HiBISCuS
take links over the Web of Linked Data into account and
achieve higher precisions than other systems not doing
this task. The evaluation results also show that links
between data are important factors for source selection
when tackling distributed queries on triple-style data (e.g.
linked data).

6.2 Evaluation of Execution Time

In this section, we evaluate the time performance of
LDMS that implement approaches presented in this paper,
and compare with SPLENDID and FedX. Besides of one
warm execution, these three systems execute all queries
five times and the average time is used for comparisons.
The difference in these three systems are technologies of
source selection and join optimization. FedX uses a
runtime source selection and heuristics to reordering join
operations. Both SPLENDID and LDMS use statistical
information to select relevant sources for triple patterns
and optimize query plans. While SPLENDID implements
both nested loops join and pipeline join, The technologies

c© 2015 NSP
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used by FedX for distributed join operations depend on
bound join. LDMS reorders joins based on the result of
cardinality estimation of sub-queries and executes join
operations in the way of range join.

The results of the experiment is shown in Figure3.
From the Figure3, we can see that the time performance
for FedX and LDMS is comparable for the query LS3. It
is clear that this query has more results than other queries
, and the cost of query decomposition account for very
small proportion of the overall time cost. For CD6, LS3
and LS5, SPLENDID encounters connection errors due to
opening too many connections to data sources.
SPLENDID produces query plans based on pre-statistics
and prunes them using additional ASK queries. It leads to
a lower time performance for some queries, i.e. CD1-5,
CD7, LS1-2, LS4. The lack of FedX is that it may
generate many useless execution plans for some queries.
In some query plans when evaluating query LS6, the first
sub-query evaluated has non-empty result set. Many
intermediate results transferred to local federator has no
contributions to the final query results because the join
operation between them and the next sub-query produces
an empty set.

The approach of source selection presented in this
paper prunes a lot of data sources potentially having no
contributions for the final query answers, such that
avoiding many useless remote requests and network
traffic. Furthermore, the range join can decrease the
number of uploading data needed for join operations.
Though the range join may increase the number of
downloading data, the downloading speed is generally
faster than the uploading speed for most of data sources.
Hence, LDMS is faster than other systems for most of
queries.

7 Conclusions

We have presented an approach for evaluating SPARQL
queries over the Web of Linked Data. Source selection
and distributed join operations are key factors concerning
performance of linked data query engines. We presented a
link-aware source selection approach and a novel way to
execute distributed join operations. We evaluated our
source selection approach against DARQ, SPLENDID,
FedX, ANAPSID and HiBISCuS. The evaluation shows
that the precision of source selection of the first four
systems is improved significantly on average. We also
compare the time performance with SPLENDID and
FedX. The results of evaluation show that LDMS is faster
than other two systems for most of queries.

The source selection approach presented in this paper
is similar with the one proposed in [13]. The difference
between them lies in the type of their statistics model.
The former is based on a property link graph and the later
is based on a class link graph. From the evaluation results
we can see that the link-aware source selection strategies
are better than others with respect to the accuracy of the

source selection. Due to the nature of the linked data, the
link relationship between resources and between data
sources is very important in the query processing.

Besides, distribution join operations are in the center
for most of query engines for distributed data. The range
join presented in this paper is a novel approach and the
experiments show its effectiveness.
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