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Abstract: The foreign exchange markets felt the necessity of using contracts written on harmonic averages. They are attractive because
are cheaper than the contracts written on the arithmetic average, and make more financial sense than contracts written ongeometric
averages. The goal of this paper is to consider Asian optionsand future contracts on harmonic averages of stock values. Since the
harmonic average of a set of lognormal random variables doesnot have an explicit representation, a close-form pricing formula
for options and futures is missing. However, we obtain the value of a future contract expressed as an infinite series and provide an
approximative formula for it. In the absence of a closed formformula for the value of a call, we obtain an approximation formula for
the case when the stock volatilityσ is small. This is done by using a variable reduction technique and applying a convolution with the
heat kernel of the underlying operator.
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1 Introduction

Asian options are option contracts written on a certain
type of average value of the stock over some given period
of time. These types of options have the advantage of
reducing the risk of market manipulation of the
underlying stock near or at maturity (see Hull [18]). Since
they are also cheaper than plain vanilla European options,
they are desirable for time-dependent insurance contracts.
There are several types of continuous averages on the
stockSt that can be considered:

Arithmetic average:AT = 1
T

∫ T
0 St dt,

Geometric average:GT = e
1
T
∫ T
0 lnSt dt,

Harmonic average:HT = T
∫ T
0

1
St

dt
.

It is well-known that the arithmetic average dominates
the geometric average, which in turn dominates the
harmonic average, i.e.,

AT ≥ GT ≥ HT .

This implies that if one considers call options on the
aforementioned three types of averages, then the cheapest

call option is on the harmonic mean and the most
expensive corresponds to the arithmetic mean.

Asian contracts on arithmetic average had been first
introduced by Boyle and Emanuel [4] in 1980, and since
then there has been a great interest and scholarly effort
dedicated to their study.

Close-form pricing formulas exist for Asian options
on geometric continuous averages (Kemma and Vorst
[19]). However, no exact pricing formulas have been
found in the case of arithmetic average. Their pricing
techniques are based either on numerical methods or on
analytical approximations. The former contains
approaches using binomial trees (Cho and Lee [9],
Ritchken and Vijh [25], Tan and Vetsal [28]), numerical
schemes (Alzairy et al. [1], Barraquand and Prudet [2],
Dewynne and Wilmott [10]), fast Fourier transform
(Caverhill and Clewlow [7]), or Monte-Carlo method
([13] Fu et al. [13]). The latter approach involves
analytical and pseudo-analytical approximations
involving Laplace transforms or lower bounds (Geman
and Yor [14], Rogers and Shi [26], Levy and Turnbull
[21], Turnbull and Wakeman [29], Milevsky and Posner
[22], etc.) We also note that some relatively recent work
provided new insights into the pricing problem: Linetsky
[20] found a spectral expansion of the Asian option price

∗ Corresponding author e-mail:fares@sci.kuniv.edu.kw

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/090606


2804 F. Al-Azemi, O. Calin: Asian Options with Harmonic Average

involving Wittaker functions; Bayraktar and Xing [3]
found an iterative numerical method for solving the
corresponding partial integro-differential equation for
Asian options; Hoogland and Neumann [17] used
symmetry arguments to solve the pricing differential
equation; Fouque and Han [12] extended the study to
stochastic volatility models; Vecer and Xu [30] modeled
the case of volatility jumps. The reader can also find more
theoretical classical details in the books of Hull [18] and
Wilmott [32]. For implementations with Mathematica the
reader is referred to Shaw [27].

Even if in practice the underlying asset is the
arithmetic average of the stock, it is always theoretically
possible to consider Asian options on other types of
averages, such as harmonic averages, which are
apparently more mathematically challenging. This is the
reason why the academic literature regarding harmonic
averages is very limited. There are two types of methods
available in the literature: one is using Monte-Carlo
simulations and approximations methods, see Chen and
Wan [8]; and another using a simplification to a partial
differential equation in one spatial variable after a
numeraire change and using the time reversal argument,
see the recent paper of Vecer [31]. More details regarding
contracts on a harmonic average can be found in Wystup
[33].

Asian options on a harmonic average of the stock are
attractive because of their reduced price (the call option
on a harmonic average is cheaper than a call on the other
two previously discussed averages); however, this type of
options do not trade at the present time.

The present paper investigates Asian options on
harmonic average, the main concern being pricing calls,
puts and future contracts with the underlying asset being
the continuous harmonic average of the stock. Since the
harmonic average of a set of lognormal random variables
does not have an explicit representation, a close-form
pricing formula for options and futures is missing.
However, we obtain the value of a future contract
expressed as an infinite series and provide an
approximative formula for it. In the absence of a closed
form formula for the value of a call, we obtain an
approximation formula for the case when the stock
volatility σ is small. This is done by using a variable
reduction technique and applying a convolution with the
heat kernel of the underlying operator.

By the harmonic average ofN numbers we understand
the inverse of the arithmetic average of the inverses of the
numbers. We shall use a continuous analog of this
concept since the sampling is considered continuous.
Given the non-linear behavior of the harmonic average,
we are looking just for an approximate pricing formula
for the case when the stock volatility is small (the
semi-classical asymptotics asσ → 0).

The main reason for which the literature on Asian
options on harmonic average is rather limited is certainly
related with the apparent lack of financial meaning of the

harmonic mean. However, we shall present a few links
with the field of finance.

As pointed out in Vecer [31], the contracts written on
the harmonic average of the underlying price are very
popular in the foreign exchange markets, where they are
used for protection purposes. The advantage of using
harmonic averages is twofold: the corresponding calls are
cheaper and the harmonic average is more stable than the
arithmetic average (see Chen and Wan [8]). Moreover,
there is a link between the options on harmonic average
and the previously studied Australian option, see Vecer
[31], Handley [15], Moreno and Navas [23], or Ewald et
al. [11]. It is worth noting that there is more financial
intuition related to the harmonic average rather than to the
geometric average. This financial sense comes from the
fact that the inverse of the harmonic average is the
average of the inverse of the stock prices.

On the other hand, the harmonic mean has a well
known application in electrical circuits: the total
resistance of a set of parallel resistors is obtained by
adding up the reciprocals of the individual resistance
values, and then taking the reciprocal of their total. More
precisely, ifR1 andR2 are the resistances of two parallel
resistors, then the total resistance is computed by the
formula RT = 1

1
R1

+ 1
R2

= 1
2H (R1,R2), which is half the

harmonic mean of the value of resistors’ resistances.
If we accept the hypothesis that the financial market is

similar to an electrical circuit (whose elements have
time-dependent parameters), then the flow of money
corresponds to the electrical current, while the financial
institutions correspond to elements of the electrical
circuit. If one can meaningfully define the concept of
market resistance of a financial institution, then the total
market resistance of parallel financial institutions is
computed using a harmonic average. By “parallel
institutions” we mean institutions with the same source of
inflow of money and the same out-flow pool of capital
(this mimics the way in which two parallel resistors have
common inflow and outflows of current).

A second observation that can sustain the comparison
hypothesis between the financial market and an electrical
circuit is given by the similarity of their governing laws:
the motion of the electrical current in an electrical
transmission line is described by the telegrapher’s
equations (introduced by Heaviside in 1880). These are
similar to the Black-Scholes equation satisfied by the
price of a derivative.

Last, but not least, finding a pricing formula for an
Asian derivative on a harmonic average of stocks is a
mathematically challenging problem, which deserves the
study effort, regardless whether it can have a more or less
immediate practical application.

The plan of the paper is as follows: After a brief
introduction to the continuous harmonic average of stock
values in Section2, the next two sections deal with the
Black-Scholes equation satisfied by derivatives on
harmonic average and the boundary conditions associated
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with strike Asian options. Section5 provides a pricing
formula for forward contracts on harmonic averages, the
pricing formula being expressed as an infinite series with
time variable coefficients. The put-call parity is presented
in Section 6. Section 7 provides a semi-classical
asymptotics formula for the price of the call in the case
when the stock volatility is small. The main result of this
section is presented in Theorem2. The discussion
presented in Section7 explains the limitations of the
method in improving the accuracy.

2 The harmonic average of stocks

We denote bySti the values of a stock evaluated discretely
at the sampling datesti, i = 1, . . . ,N, with ti ∈ [0,T ], where
T stands for the maturity time of the option. The harmonic
average of the stock valuesSti is defined as

H (t1, · · · , tN) =
N

∑N
i=1

1
Sti

.

If consider equidistant sampling datest j = jT
N , the

continuously sampled harmonic average of the stock price
between 0 andT is obtained by taking the limitN → ∞ in
the previous formula

lim
N→∞

H (t1, · · · , tN) = lim
N→∞

N

∑N
i=1

1
Sti

= lim
N→∞

T

∑N
i=1

1
Sti

T
N

=
T

∫ T
0

1
Sτ

dτ
.

Therefore, it makes sense to define the continuously
sampled harmonic average as

Ht =
t

∫ t
0

1
Sτ

dτ
. (1)

We can equivalently writeHt =
t
It

, whereIt =
∫ t

0
1
Sτ

dτ
satisfies

dIt =
1
St

dt, I0 = 0, d
( 1

It

)

=− 1

StI2
t

dt.

In the above relationsSt denotes the stock price at timet
having the constant returnµ and volatilityσ , i.e.

dSt = µSt dt +σSt dWt .

The process Ht satisfies the following stochastic
differential equation

dHt = t d
( 1

It

)

+
1
It

dt + dt d
(1

It

)

=
1
It

(

1− t
St It

)

dt =
1
t
Ht

(

1− Ht

St

)

dt.

This can be written equivalently as the following
integral equation:

Ht = S0+

∫ t

0

1
τ
Hτ

(

1− Hτ
Sτ

)

dτ.

The previous integral equation cannot be solved
explicitly for Ht . However, some straightforward
properties ofHt are given in the following:

(1) Ht > 0, ∀t > 0;

(2) H0 = S0 > 0;

(3) Ht
t is a decreasing function oft.

The condition(1) follows from the fact thatSt > 0. The
initial condition given by(2) is obtained as an application
of the L’Hospital rule

H0 = lim
tց0

Ht = lim
tց0

t
It
= S0.

Taking the increment and using Ito’s formula we obtain
(3)

d
(

Ht

t

)

=
t dHt −Ht dt

t2 =− 1
t2

Ht

St
dt < 0.

It is worthy to note that the random variableHt is
neither normally nor lognormally distributed, and an
exact expression for the momentsE[Ht ] andE[H 2

t ] is
difficult to obtain in a closed form.

3 The Black-Scholes equation

If consider an Asian option, whose valueV (St , t,Ht)
depends on the variablesSt ,Ht , t, then a standard use of
the non-arbitrage argument and Ito’s formula leads to the
following Black-Scholes-type equation

∂V
∂ t

+
1
2

σ2S2 ∂ 2V
∂S2 + rS

∂V
∂S

+
1
t
Ht

(

1− Ht

St

) ∂V
∂Ht

= rV.

Unfortunately, this equation is more complicated than a
standard Black-Scholes equation. This is the reason why
we consider another approach. SinceHt is the quotient oft
andIt , we shall consider the value of an Asian derivative as
V (St , t, It), depending on the variablesSt , It , t. By standard
methods we can show that its associated Black-Scholes-
type equation is

∂V
∂ t

+
1
2

σ2S2
t

∂ 2V

∂S2
t
+ rSt

∂V
∂St

+
1
St

∂V
∂ It

= rV. (2)

We are interested in solving the equation (2) subject to the
following call or put boundary conditions, where the strike
is replaced by the harmonic average

Call payoff: C(ST ,T ) = max
(

ST −HT ,0
)

, (3)

Put payoff: P(ST ,T ) = max
(

HT − ST ,0
)

, (4)

with

HT =
T

∫ T
0

1
S(τ) dτ

=
T
IT

.
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Since we can write

C(ST ,T ) = ST max
(

1− T
ST IT

,0
)

, (5)

P(ST ,T ) = ST max
( T

ST IT

−1,0
)

, (6)

then both payoffs are of typeST Λ(RT ,T ), with RT = ST IT .
Then it makes sense to look for solutions for the Black-
Scholes equation (2) of the same type, i.e.,V (St , t,Ht) =
StW (Rt , t), with Rt = St It . This will reduce the variables in
equation (2). Using the chain rule we have

∂V
∂ t

= St
∂W
∂ t

,
∂V
∂ It

= S2
t

∂W
∂Rt

∂V
∂St

= W (t,R)+ StIt
∂W
∂Rt

∂ 2V

∂S2
t
= 2It

∂W
∂Rt

+ StI
2
t

∂ 2W

∂R2
t
.

Substituting in (2) yields1

∂W
∂ t

+
1
2

σ2R2
t

∂ 2W

∂R2
t
+
(

1+(r+σ2)Rt

)∂W
∂Rt

= 0. (7)

The advantage of this equation is that it depends only on
two variables,t andRt . The final boundary conditions (5)–
(6) become

WC(RT ,T ) = max
(

1− T
RT

,0
)

, (8)

WP(RT ,T ) = max
( T

RT

−1,0
)

. (9)

The formal condition corresponds to a call and the latter to
a put.

4 Boundary conditions

In order to have uniqueness for the equation (7) with final
boundary conditions (8)–(9), we shall impose some
boundary conditions on the solutionW (R, t) asR → 0 and
R → ∞. WhenR → ∞, from (8)–(9) yields

WC(∞,T ) = 1, WP(∞,T ) = 0.

In order to investigate the behavior asR → 0, we first
find the stochastic equation followed by the processRt .

dRt = d(StIt) = St dIt + It dSt + dIt dSt
︸ ︷︷ ︸

=0

= dt + µRt dt +σRt dWt .

1 The same reduction technique applied for continuous
arithmetic average leads to the similar equation

∂W
∂ t

+
1
2

σ2R2
t

∂ 2W

∂R2
t
+(1− rRt )

∂W
∂Rt

= 0.

HenceRt satisfies

dRt = (1+ µRt)dt +σRt dWt , R0 = 0. (10)

Since the coefficients do not increase faster than a linear
function, the aforementioned equation has only one
solution Rt (see Øksendal [24], p. 68). The probability
density ofRt is given by the heat kernel of the generator
operator ofRt

L =
1
2

σ2x2 d2

dx2 +(1+ µx)
d
dx

. (11)

Finding the heat kernel of (11) is as difficult as solving
the reduced Black-Scholes equation (7). Integrating in the
aforementioned equation and taking the expectation
operator yields the integral equation

E(Rt) =

∫ t

0
(1+ µE(Rs))ds,

with the solutionE(Rt) =
eµt−1

µ , soE(Rt )→ ∞, ast → ∞.
MakingR → 0 in (7) yields the boundary condition

∂W
∂ t

+
∂W
∂R

= 0 at R = 0,

which says that∆W +θW = 0 atR = 0 (where∆W andθW

stand for the delta and theta of the option).

The unique solution of the equation

∂W
∂ t

+
1
2

σ2R2
t

∂ 2W

∂R2
t
+
(

1+(r+σ2)Rt

)∂W
∂Rt

= 0

W (R,T ) = max
(

1− T
R
,0
)

W (∞, t) = 1

∂W
∂ t |R=0

=−∂W
∂R |R=0

will lead to a call option, while

∂W
∂ t

+
1
2

σ2R2
t

∂ 2W

∂R2
t
+
(

1+(r+σ2)Rt

)∂W
∂Rt

= 0

W (R,T ) = max
(T

R
−1,0

)

W (∞, t) = 0

∂W
∂ t |R=0

=−∂W
∂R |R=0

corresponds to a put.

5 Pricing a Forward Contract

A forward contract on the harmonic average is a
derivative satisfying equation (2) that pays at maturity
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FT = ST − HT . Its value F(t,St , It) satisfies the final
condition problem

∂F
∂ t

+
1
2

σ2S2
t

∂ 2F

∂S2
t
+ rSt

∂F
∂St

+
1
St

∂F
∂ It

= rF (12)

F(T,ST , IT ) = ST − T
IT
. (13)

Since the payoff can be written asST − T
IT

= ST

(

1− T
RT

)

,

with RT = ST IT , it makes sense to look for a solution of
the form

F(t,St , It) = StY (t,Rt), (14)

whereY (t,R) satisfies

∂Y
∂ t

+
1
2

σ2R2 ∂ 2Y
∂R2 +

(
1+(1+σ2)R

)∂Y
∂R

= 0 (15)

Y (T,R) = 1− T
R
. (16)

We look for a solution in the form of a Laurent series inR
with coefficients functions oft

Y (t,R) = a0(t)+ ∑
j≥1

a j(t)R
j + ∑

j≥1

a− j(t)R
− j, (17)

Substituting (17) into equation (15) and equating the
coefficients of similar powers ofR yields the following
infinite system of differential equations

a′0(t)+ a1(t) = 0

a′1(t)+2a2+(σ2+ r)a1(t) = 0

a′2(t)+3a3(t)+2(σ2+ r)a2(t)+σ2a2(t) = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
a′−1

(t)− (σ2+ r)a−1(t)+σ2a−1(t) = 0

a′−2
(t)− a−1(t)−2(σ2+ r2)a−2(t)+3σ2a−2(t) = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
The payoff condition implies the following final
conditions

a0(T )= 1, a−1(T )=−T, a j(T )= a− j(T )= 0, ∀ j 6=−1,0.

We start solving the system from the equation in solely
a−1(t) and obtain

a−1(t) =−Te−r(T−t).

Substituting in the next equation we obtain the linear
equation fora−2(t)

a−2(t)+ (σ2−2r)a−2(t) =−Te−r(T−t), a−2(T ) = 0.

with the solution

a−2(t) =
T

σ2− r

(

e(σ
2−2r)(T−t)− e−r(T−t)

)

.

In order to solve fora0(t), we choose the simplest
function satisfyinga0(T ) = 1, which isa0(t) = 1. Solving
recursively for a j(t), j ≥ 1, we obtain
a1(t) = a2(t) = · · ·= 0. Therefore (17) becomes

Y (t,R) = 1+ ∑
j≥1

a− j(t)R
− j

≈ 1− e−r(T−t) T
R

+
T

σ2− r

(

e(σ
2−2r)(T−t)− e−r(T−t)

) 1
R2 . (18)

Substituting in (14) provides the approximate value of the
forward contractFt = F(t,St , It)

F(t,St , It) = StY (t, ItSt) = St

(

1+ ∑
j≥1

a− j(t)(St It)
− j
)

≈ St − e−r(T−t) T
It

+
T

σ2− r

(

e(σ
2−2r)(T−t)− e−r(T−t)

) 1

St I2
t
.

This can be also written in terms of harmonic average
Ht = t/It as

Ft ≈ St − e−r(T−t)
Ht

T
t

+
1
St

H 2
t

t2 T
(

e(σ
2−2r)(T−t)− e−r(T−t)

)

. (19)

We can also approach solving the aforementioned
system using the exponential of a matrix. We recall that
the exponential of ann× n matrix A is then× n matrix
defined byeA = ∑k≥0

1
k! A

k = In +A+ 1
2! A

2 + 1
3! A

3 + . . . .
In order to apply the aforemention method, the ODE
system for the coefficientsa j(t), j ≥ 1, is written in the
following matrix form

d
dt







a0
a1
a2
...







=






0 −1 0 0 · · ·
0 −(r+σ2) −2 0 · · ·
0 0 −(3σ2+2r)−3 0 · · ·
· · · · ·












a0
a1
a2
...






,

or equivalently, asX(t)′ = AX(t), with the final condition

X(T ) =







1
0
0
...






. SinceX(t) =







1
0
0
...







obviously verifies the

system, by the uniqueness theorem of linear ODE systems,
X(t) is the unique solution of the system. This implies

a1(t) = 1, a2(t) = a3(t) = · · ·= 0.

The ODE system for the coefficientsa− j(t), j ≥ 1, can
be written in the matrix form

d
dt






a−1(t)
a−2(t)

...




=





r 0 0 0 · · ·
1 2r−σ2 0 0 · · ·
0 · · · · · ·










a−1(t)
a−2(t)

...




 ,
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or equivalentlyY (t)′ = BY (t), with the final condition

Y (T ) =







−T
0
0
...






.

The solution is given by

Y (t) = eB(T−t)X(T ) =−Tcol1(e−A(T−t)),

where col1(M) denotes the first column of matrixM.

6 The put-call parity

A put-call parity for the Asian strike options on harmonic
average can be developed as in the following. Since we
have

WC(RT ,T )−WP(RT ,T ) = 1− T
RT

,

using a non-arbitrage opportunity argument yields

WC(Rt , t)−WP(Rt , t) = Yt , 0≤ t ≤ T (20)

whereYt is a security that satisfies equation (7), paying at
maturityYT = 1− T

RT
, and having the value computed in

the previous section, see formula (18).

7 Pricing the Call

In the virtue of the put-call parity it suffices to price only
the call. Making the substitutions

τ = T − t, y = (lnR)/σ , U(τ,y) =W (R, t)

we obtain

σR
∂W
∂R

=
∂U
∂y

1
2

σ2R2 ∂ 2W
∂R2 =

1
2

∂ 2U
∂y2 − σ

2
∂U
∂y

.

Therefore, the final condition problem forW , which is
given by (7 –8), becomes the following initial problem for
U(τ,y)

∂
∂τ

U =
1
2

∂ 2

∂y2U +
1
σ

(

e−σy + r+
σ2

2

) ∂
∂y

U (21)

U(0,y) = max(1−Te−σy,0). (22)

The problem (21)–(22) is almost impossible to be solved
explicitly. However, there are good chances to find an

approximation of the solution in the case of small
volatility σ . Since forσ → 0 we have

1
σ

(

e−σy + r+
σ2

2

)

=
1+ r

σ
− y+O(σ), (23)

the leading term, forσ small, is1+r
σ −y. Then the equation

(21) can be approximated by

∂
∂τ

U =
1
2

∂ 2

∂y2U +
(1+ r

σ
− y
) ∂

∂y
U.

In order to simplify the equation, we substitutex = y−
1+r
σ , u = τ/2 andZ(u,x) =U(τ,y) to obtain the following

simplified version of the problem(21−22)

∂
∂u

Z =
( ∂ 2

∂x2 −2x
∂
∂x

)

Z (24)

Z(0,x) = max(1−Te−(σx+1+r),0) := φ(x) (25)

Let K(x0,x;u) denote the heat kernel of the operatorL =
∂ 2

∂x2 − 2x ∂
∂x , i.e. K(x0,x;u) verifies the equation (24) and

satisfies the limit condition limuց0 K(x0,x;u) = δx0, where
δx0 denotes the Dirac distribution.

Then the solution of the initial problem (24)–(25) can
be written as

Z(u,x) =
∫ ∞

−∞
K(x,y;u)φ(y)dy

=

∫ ∞

(lnT−r−1)/σ
K(x,y;u)

(

1−Te−(σy+1+r)
)

dy

=
∫ ∞

(lnT−r−1)/σ
K(x,y;u)dy

−Te−(1+r)
∫ ∞

(lnT−r−1)/σ
e−σyK(x,y;u)dy

= I1(u,x)−Te−(1+r)I2(u,x).

(26)

Therefore, it suffices to find a formula for the heat kernel
K(x0,x;u) and then to compute integralsI1(u,x) and
I2(u,x). According to Theorem 10.28 of Calin and Chang
[5], p. 223, we have:

Theorem 1.Let a ∈ R. The heat kernel, K = K(x0,x;u), of
the operator ∂ 2

x − ax∂x is given by

K =
1√
4πu

√
au

sinh(au)
e
− 1

4u
au

sinh(au) [(x
2+x2

0)cosh(au)−2xx0],

with u > 0.

Choosinga = 2, the above formula becomes

K(x,y;u) =
1

√

2π sinh(2u)
e
− 1

2sinh(2u) [(x
2+y2)cosh(2u)−2xy]

.

(27)
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Using (27) we shall be able to compute explicitly the
integralsI1(u,x) and I2(u,x) contained in the expression
(26). This will be done using standard techniques
involving Gaussian integrals and completion to a square.
We shall start with the computation of the integralI1(u,x).

I1(u,x) =
∫ ∞

(lnT−r−1)/σ
K(x,y;u)dy

=
e−

x2
2 coth(2u)

√

2π sinh(2u)
×

∫ ∞

(lnT−r−1)/σ
e
− 1

2 coth(2u)
(

y2− 2x
cosh(2u) y

)

dy

=
e−

x2
2 coth(2u)e

1
2 coth(2u) x2

cosh2(2u)

√

2π sinh(2u)
×

∫ ∞

(lnT−r−1)/σ
e
− 1

2 coth(2u)
(

y− x
cosh(2u)

)2

dy

=
e−

x2
2 tanh(2u)

√

2π sinh(2u)
×

∫ ∞

√
coth(2u)

(
lnT−r−1

σ − x
cosh(2u)

)
e−

1
2 z2 1
√

coth(2u)
dz

=
1

√

cosh(2u)
e−

x2
2 tanh(2u) 1√

2π
×

∫ ∞

√
coth(2u)

(
lnT−r−1

σ − x
cosh(2u)

)
e−

1
2 z2

dz

=
1

√

cosh(2u)
e−

x2
2 tanh(2u)×

N
(√

coth(2u)
( x

cosh(2u)
− 1

σ
(lnT − r−1)

))

,

where N(x) = 1√
2π

∫ x
−∞ e−

1
2 z2

dz denotes the probability
function of a standard normal random variable. Hence

I1(u,x) =
1

√

cosh(2u)
e−

x2
2 tanh(2u)N(δ1), (28)

where

δ1 =
√

coth(2u)
( x

cosh(2u)
− lnT − r−1

σ

)

. (29)

We shall compute next the integralI2(u,x).

I2(u,x) =
∫ ∞

(lnT−r−1)/σ
e−σyK(x,y;u)dy

=
e−

x2
2 coth(2u)

√

2π sinh(2u)
×

∫ ∞

(lnT−r−1)/σ
e
− 1

2 coth(2u)
(

y2− 2x
cosh(2u) y

)
−σy

dy

=
e−

x2
2 coth(2u)

√

2π sinh(2u)
×

∫ ∞

(lnT−r−1)/σ
e
− 1

2 coth(2u)
(

y2− 2(x−σ sinh(2u))
cosh(2u) y

)

dy

=
e−

x2
2 coth(2u)

√

2π sinh(2u)
e

1
2 coth(2u) (x−σ sinh(2u))2

cosh2(2u) ×
∫ ∞

(lnT−r−1)/σ
e
− 1

2 coth(2u)
(

y− (x−σ sinh(2u))
cosh(2u)

)2

dy

=
e−

x2
2 coth(2u)e

(x−σ sinh(2u))2

sinh(4u)

√

2π sinh(2u)coth(2u)
×

∫ ∞
√

coth(2u)
(

lnT−r−1
σ − x−σ sinh(2u)

cosh(2u)

) e−
1
2 z2

dz

=
e
(x−σ sinh(2u))2

sinh(4u) − x2
2 coth(2u)

√

cosh(2u)
×

N
(√

coth(2u)
(x−σ sinh(2u)

cosh(2u)
− lnT − r−1

σ

))

.

Hence

I2(u,x) =
1

√

cosh(2u)
e
(x−σ sinh(2u))2

sinh(4u) − x2
2 coth(2u)N(δ2), (30)

where

δ2 =
√

coth(2u)
(x−σ sinh(2u)

cosh(2u)
− lnT − r−1

σ

)

. (31)

Working back through the previous substitutions

x = y− 1+ r
σ

, y =
lnR
σ

, R = IS,

u =
τ
2
, τ = T − t, I =

t
H

,

and using that the price of the call is given by

C =V (S, t,H ) = SW(R, t) = SU(τ,y) = SZ(u,x),

we conclude with the following result.
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Theorem 2.For σ small, the price of a strike call option
on a harmonic average at time t is approximated by

C = St Z

(

T − t
2

,
1
σ

(

ln
( tSt

Ht

)

− r−1
)
)

, (32)

where

Z(u,x) = I1(u,x)−Te−(1+r)I2(u,x),

with

I1(u,x) =
1

√

cosh(2u)
e−

x2
2 tanh(2u)N(δ1)

I2(u,x) =
1

√

cosh(2u)
e
(x−σ sinh(2u))2

sinh(4u) − x2
2 coth(2u)N(δ2),

and

δ1 =
√

coth(2u)
( x

cosh(2u)
− lnT − r−1

σ

)

,

δ2 =
√

coth(2u)
(x−σ sinh(2u)

cosh(2u)
− lnT − r−1

σ

)

.

8 Discussion

A natural question is whether we can obtain a better
approximation for the price of the call following the same
lines as before. Can the approximation (23) be made more
accurate while all the previous computations can be still
carried out in an explicit form? If we go further with one
more degree of accuracy in (23), we obtain

1
σ

(

e−σy + r+
σ2

2

)

=
σ
2

y2−y+
(1+ r

σ
+

σ
2

)

+O(σ2), σ → 0.

(33)

It is worth noting that the expression on the right is
quadratic iny, while in the case of (23) the expression is
just linear in y. This makes an essential difference in
computation, which will be explained next. In order to
carry out the computation, we need an analog of Theorem
1 to provide the heat kernel of the operator∂ 2

x − ax2∂x.
Unfortunately, an explicit formula for the heat kernel of
this operator does not exist. Next we shall explain briefly
why this is the case.

This type of operator has been analyzed for instance
in Calin and Chang [5], p. 223. It is known that the heat
kernel of a differential operator,K(x,y; t), measured
betweenx andy in time t can be regarded as the amount
of heat starting att = 0 from x and reachingy in time t. It
makes sense to assume that the heat moves along certain
curves of minimum resistance, which can be described as
geodesics on the associated manifold. The principal
symbol of the operator, which in our case is
H(ξ ,x) = ξ 2 + ax2ξ , is considered as a Hamiltonian
function defined on the cotangent bundle ofRx. The

bicharacteristics curves are solutions of the Hamiltonian
system ˙x = Hξ , ξ̇ = Hx. Their x-projection defines the
geodesic used for the computation of the heat kernel. A
straightforward computation of the ODE implied by the
Hamiltonian system, which is satisfied by the geodesic
x(s), is

ẍ(s) = 2a2x3(s)

x(0) = x

x(t) = y.

One difficulty of our problem is that this ODE has
infinitely many solutionsxn(s), n ≥ 1, even for|x − y|
small. This means that the expression of the heat kernel
will involve an infinite sum of contributions along each
geodesicxn(s). It is known that each contribution along

xn(s) involves the amounte−
1
s Sn(x,y;t), whereSn(x,y; t) is

the action along the geodesicxn(s) from x to y in time t.
The action Sn(x,y; t) satisfies the Hamilton-Jacobi
equation∂tSn +H(x,∇Sn) = 0, a nonlinear equation that
is usually hard to be solved explicitly, fact that brings
another difficulty to the problem. Furthermore, even
harder is to compute the weights of the contributions
e−

1
s Sn(x,y;t). These are denoted byVn(x,y; t) and satisfy

certain transport equations, that describe how the volume
element evolves along the geodesic flow starting atx. If
all the above difficulties are overcome, the explicit
solution of the heat kernel would be

K(x,y; t) = ∑
n≥1

Vn(x,y; t)e−
1
s Sn(x,y;t).

The coefficientsVn and exponentsSn can be computed
numerically if needed; however, no explicit formulas can
be worked out for them. The present paper deals only
with the approximation of the heat kernel with only the
main term, i.e., K(x,y; t) ≈ V1(x,y; t)e−

1
s S1(x,y;t). The

“volume element”V1(x,y; t) is also called the van Vleck
determinant and is obtained from the determinant of the
matrix∂x∂yS(x,y, t), see for instance Calin et al. [6]. Since
from equation (24) we haveφ(y)≥ 0, then

∫ ∞

∞
K(x,y;u)φ(y)dy >

∫ ∞

∞
V1(x,y; t)e−

1
s S1(x,y;t)φ(y)dy,

and hence the foregoing approximation will lead to a lower
limit for the price of the call on harmonic average.
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