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Abstract: The foreign exchange markets felt the necessity of using@cts written on harmonic averages. They are attractivalse
are cheaper than the contracts written on the arithmeticagee and make more financial sense than contracts writtgyeometric
averages. The goal of this paper is to consider Asian opt@misfuture contracts on harmonic averages of stock vallirse $he
harmonic average of a set of lognormal random variables doediave an explicit representation, a close-form priciognula
for options and futures is missing. However, we obtain tHee/@f a future contract expressed as an infinite series amddar an
approximative formula for it. In the absence of a closed féonmula for the value of a call, we obtain an approximatiomfala for
the case when the stock volatilityis small. This is done by using a variable reduction techamigud applying a convolution with the
heat kernel of the underlying operator.
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1 Introduction call option is on the harmonic mean and the most
expensive corresponds to the arithmetic mean.

Asian options are option contracts written on a certain ) ) ) ]
type of average value of the stock over some given period ASian contracts on arithmetic average had bgen first
of time. These types of options have the advantage ofhtroduced by Boyle and Emanuef][in 1980, and since
reducing the risk of market manipulation of the then there has been a great interest and scholarly effort
underlying stock near or at maturity (see Hulg]). Since  dedicated to their study.

they are also cheaper than plain vanilla European options, Close-form pricing formulas exist for Asian options
they are desirable for time-dependent insurance contract®n geometric continuous averages (Kemma and Vorst
There are several types of continuous averages on thEL9). However, no exact pricing formulas have been

stockS that can be considered: found in the case of arithmetic average. Their pricing
_ _ LT techniques are based either on numerical methods or on
Arithmetic averageAr = 1 [y Sdt, analytical approximations. The former contains
LT approaches using binomial trees (Cho and L& [
Geometric averag@r = et /o NS dt, Ritchken and Vijh 5], Tan and Vetsal 28]), numerical
schemes (Alzairy et al.1], Barraquand and Prude]]
Harmonic average#t = @. Dewynne and Wilmott 10Q), fast Fourier transform

(Caverhill and Clewlow T]), or Monte-Carlo method
It is well-known that the arithmetic average dominates([13] Fu et al. [L3]). The latter approach involves
the geometric average, which in turn dominates theanalytical and pseudo-analytical approximations

harmonic average, i.e., involving Laplace transforms or lower bounds (Geman
and Yor [14], Rogers and ShiZ€], Levy and Turnbull
Ar > Gt > 4. [21], Turnbull and Wakeman2{9], Milevsky and Posner

[22], etc.) We also note that some relatively recent work
This implies that if one considers call options on the provided new insights into the pricing problem: Linetsky
aforementioned three types of averages, then the cheapg&0] found a spectral expansion of the Asian option price
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involving Wittaker functions; Bayraktar and Xing3][ harmonic mean. However, we shall present a few links
found an iterative numerical method for solving the with the field of finance.
corresponding partial integro-differential equation for  As pointed out in Vecerd1], the contracts written on
Asian options; Hoogland and Neumanri7] used the harmonic average of the underlying price are very
symmetry arguments to solve the pricing differential popular in the foreign exchange markets, where they are
equation; Fouque and Harlg] extended the study to used for protection purposes. The advantage of using
stochastic volatility models; Vecer and X8(] modeled  harmonic averages is twofold: the corresponding calls are
the case of volatility jumps. The reader can also find morecheaper and the harmonic average is more stable than the
theoretical classical details in the books of HUlB[and  arithmetic average (see Chen and Wal).[Moreover,
Wilmott [32]. For implementations with Mathematica the there is a link between the options on harmonic average
reader is referred to Sha®T)]. and the previously studied Australian option, see Vecer
Even if in practice the underlying asset is the [31], Handley [L5, Moreno and Navas23], or Ewald et
arithmetic average of the stock, it is always theoreticallyal. [11]. It is worth noting that there is more financial
possible to consider Asian options on other types ofintuition related to the harmonic average rather than to the
averages, such as harmonic averages, which argeometric average. This financial sense comes from the
apparently more mathematically challenging. This is thefact that the inverse of the harmonic average is the
reason why the academic literature regarding harmoni@verage of the inverse of the stock prices.
averages is very limited. There are two types of methods On the other hand, the harmonic mean has a well
available in the literature: one is using Monte-Carlo known application in electrical circuits: the total
simulations and approximations methods, see Chen antksistance of a set of parallel resistors is obtained by
Wan [8]; and another using a simplification to a partial adding up the reciprocals of the individual resistance
differential equation in one spatial variable after a values, and then taking the reciprocal of their total. More
numeraire change and using the time reversal argumenprecisely, ifR; andR; are the resistances of two parallel
see the recent paper of Vec8d]. More details regarding resistors, then the total resistance is computed by the
contracts on a harmonic average can be found in Wystufformula Ry = —1# = %%(RLRZ), which is half the

[33. Ri

2
. . . harmonic mean of the value of resistors’ resistances.
Asian options on a harmonic average of the stock are ¢ e 4ccept the hypothesis that the financial market is
attractive because of their reduced price (the call optiong;ilar to an electrical circuit (whose elements have

on a harmonic average is cheaper than a call on the oth [me-dependent parameters), then the flow of money
two previously discussed averages); however, this type O responds to the electrical current, while the financial
options do not trade at the present time. institutions correspond to elements of the electrical
The present paper investigates Asian options orcircuit. If one can meaningfully define the concept of
harmonic average, the main concern being pricing callsmarket resistance of a financial institution, then the total
puts and future contracts with the underlying asset beingmarket resistance of parallel financial institutions is
the continuous harmonic average of the stock. Since th@omputed using a harmonic average. By “parallel
harmonic average of a set of lognormal random variablesnstitutions” we mean institutions with the same source of
does not have an explicit representation, a close-formnflow of money and the same out-flow pool of capital
pricing formula for options and futures is missing. (this mimics the way in which two parallel resistors have
However, we obtain the value of a future contract common inflow and outflows of Current)_
expressed as an infinite series and provide an A second observation that can sustain the comparison
approximative formula for it. In the absence of a closedhynothesis between the financial market and an electrical
form formula for the value of a call, we obtain an circuit is given by the similarity of their governing laws:
approximation formula for the case when the stockthe motion of the electrical current in an electrical
volatility ¢ is small. This is done by using a variable transmission line is described by the telegrapher’s
reduction technique and applying a convolution with the gquations (introduced by Heaviside in 1880). These are
heat kernel of the underlying operator. similar to the Black-Scholes equation satisfied by the
By the harmonic average &f numbers we understand price of a derivative.
the inverse of the arithmetic average of the inverses of the  Last, but not least, finding a pricing formula for an
numbers. We shall use a continuous analog of thisasian derivative on a harmonic average of stocks is a
concept since the sampling is considered continuousmathematically challenging problem, which deserves the
Given the non-linear behavior of the harmonic averagestudy effort, regardless whether it can have a more or less
we are looking just for an approximate pricing formula immediate practical application.
for the case when the stock volatility is small (the The plan of the paper is as follows: After a brief
semi-classical asymptotics as— 0). introduction to the continuous harmonic average of stock
The main reason for which the literature on Asian values in Sectior?, the next two sections deal with the
options on harmonic average is rather limited is certainlyBlack-Scholes equation satisfied by derivatives on
related with the apparent lack of financial meaning of theharmonic average and the boundary conditions associated
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with strike Asian options. SectioB provides a pricing The previous integral equation cannot be solved
formula for forward contracts on harmonic averages, theexplicitly for 4. However, some straightforward
pricing formula being expressed as an infinite series withproperties of4 are given in the following:

Fime variable coeffic[ents. The pyt—call parity i_s presglnte (1) 7 >0, vt >0

in Section 6. Section 7 provides a semi-classical )

asymptotics formula for the price of the call in the case (2) #6=%>0;

when the stock volatility is small. The main result of this ~ (3) 24 is a decreasing function of

section is presented in Theore The discussion .
presented in Sectio explains the limitations of the _ _1hecondition(1)follows from the factthag > 0. The
method in improving the accuracy. initial condition given by(2) is obtained as an application

of the L'Hospital rule

2 The har monic aver age of stocks ‘%—"m‘%ﬂ—"”éﬂ =%

We denote byg, the values of a stock evaluated discretely  Taking the incrementand using Ito’s formula we obtain
atthe sampling datesi =1,...,N, witht; € [0,T], where ~ (3)

T stands for the maturity time of the option. The harmonic

average of the stock valugs is defined as d(ﬁ) _ td%;%dt -2 At <.
t t Tt
J(t IN) = 7’\' S
(tz, - tn) = e It is worthy to note that the random variabl is

neither normally nor lognormally distributed, and an

. H 2 -
If consider equidistant sampling dates = X, the ~ ©Xact expression for the momerig 4] and E[/47] is
éﬂfflcult to obtain in a closed form.

continuously sampled harmonic average of the stock pric
between 0 and is obtained by taking the limil — oo in
the previous formula

3 The Black-Scholes equation
Nlimm,y“f(tl,---, N) = lim

N—o0 N 1 N—o0 N il ) . .
RPIE! RPIE! S N If consider an Asian option, whose vald&S§,t, %)
T depends on the variabl&, 74, t, then a standard use of
foT Ldr the non-arbitrage argument and Ito’s formula leads to the

) following Black-Scholes-type equation
Therefore, it makes sense to define the continuously

sampled harmonic average as oV 1 , 0% oV A\
ot " 5t 20 S ez STt %( St)d,%’f_rv'
t="t1
fO sdr Unfortunately, this equation is more complicated than a
. . t t1 standard Black-Scholes equation. This is the reason why
We can equivalently writef = -, wherelt = o 5:dT  \ye consider another approach. Sinégis the quotient of
satisfies andl;, we shall consider the value of an Asian derivative as
dl, = 1 lo=0 d(}) I V(S,t, ), depending on the variabl&s I;,t. By standard
' ’ ¢ Sl methods we can show that its associated Black-Scholes-

In the above relation§ denotes the stock price at time ~ YP€ €quation is
having the constant retugnand volatility g, i.e.
N 1,
+ EO' SZ

dS = pS dt+ oS dw. ot

The process 74 satisfies the following stochastic
differential equation

d%_td( )+ dt+dtd( )

_ %(1 Stlt)dt t%(l—%)dt

This can be written equivalently as the following
integral equation: with

So+/ J“f% 1——)dr.

oA oV 1oV
0—32+rsg+§0—|t—rv. (2)

We are interested in solving the equati@hgubject to the
following call or put boundary conditions, where the strike
is replaced by the harmonic average

Call payoff: C(S,,T) = max( —%;,0), 3)
Put payoff: P(S;.T) = max(ji’; — Sr,O), 4)

(@© 2015 NSP
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Since we can write HenceR; satisfies
T
c(s,.T) =Srmax(1—ST—,,0)7 ®) dR = (14 pR)dt+ OR AW,  Ro=0.  (10)
T
Since the coefficients do not increase faster than a linear
PEHT) =5 max(srl -1 0) (6) function, the aforementioned equation has only one

solution Ry (see @ksendal2d], p. 68). The probability
density ofR; is given by the heat kernel of the generator
operator ol

then both payoffs are of tyd@® A (R, T), with R, =S, I,
Then it makes sense to look for solutions for the Black-
Scholes equatior?f of the same type, i.eV(S,t,H;) =

SW(R,t), with R; = S ;. This will reduce the variables in 1 d2 d
equation ). Using the chain rule we have L= —0 X2 v +(1+ ux)&. (11)
Z—V = Sad—w, Z—Y = Z—W Finding the heat kernel oflQ) is as difficult as solving
t t R the reduced Black-Scholes equati@h (ntegrating in the
ov — W(tR) + 5k ow aforementioned equation and taking the expectation
S R operator yields the integral equation
o — 9l 0 SIZOZW ‘
oF ~ TR TR E(R) = [ (1+ HE(R))ds

Substituting in 2) yields!
with the solutionE(R;) = e“u 1 SOE(R)) — o, ast — o,

0W 1 52 ow MakingR— 0 in (7) yields the boundary condition
e ththz (1+(+0)R‘)0R_O' @)
oW oW 0 at R=0
The advantage of this equation is that it depends only on ot Tar-° & R=D
two variablest andR;. The final boundary condition§)— )
(6) become which says that,, + 8, = 0 atR= 0 (whered,, and§,,
T stand for the delta and theta of the option).
We(R;,T) = max(l— gao)a (8) The unique solution of the equation
T
We(R,,T) = max( = —1,0). (9) oW
(RT ) W_FEO-ZR?@ 5 (1+ +O'2)Rt)0—=0
The formal condition corresponds to a call and the latter to R - R
a put. — S
W(RT) max(l R,o)
W(eo,t) =1
4 Boundary conditions oW oW

ot |R=0 OR|rR=0
In order to have uniqueness for the equatignvith final
boundary conditions 8—(9), we shall impose some Will lead to a call option, while
boundary conditions on the solutigv(Rt) asR — 0 and
R — 0. WhenR — oo, from (8)—(9) yields

V\b(oo,T):L \NP(OO,T):O

In order to investigate the behavior Bs— 0, we first

AL 2R26R2+( +02)Rt)g—\étvzo

WRT) = max(IR _ 1,0)

find the stochastic equation followed by the prodass W(oo,t) =0
N—— I [
-0 ot |R=0 IJR |R=0
= dt+ uRdt+ oR dW. corresponds to a put.

1 The same reduction technique applied for continuous
arithmetic average leads to the similar equation

5 Pricing a Forward Contract
ow 1 2w ow
— +-0°R— +(1-rR)== =0. . .
ot 2 OR? oR A forward contract on the harmonic average is a

derivative satisfying equation2) that pays at maturity

(@© 2015 NSP
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Fr = St — %, Its value F(t,S,l;) satisfies the final
condition problem

1 .2 gOF  10F _
T
F(T,Sr,lT) =ST—F. (13)
Since the payoff can be written & — - = Sr(l— % ,

with Rr = Srly, it makes sense to look for a solution of
the form

F(tasalt) = SY(t,R(), (14)
whereY (t,R) satisfies
dY 1 oY
S t3 ZRZWJr (14 (1402 )R)ﬁR 0 (15)
Y(T,R)=1— % (16)

We look for a solution in the form of a Laurent seriesRn
with coefficients functions df

ao(t) + 3 ay(t W+Za

>1

Y(t DRI, (17)

Substituting 17) into equation {5 and equating the
coefficients of similar powers oR yields the following
infinite system of differential equations

ap(t) +au(t) =0

ay(t) +2ap+ (024 r)ay(t) = 0

ay(t) + 3ag(t) + 2(02 4 r)ay(t) + o%ap(t) = 0

d (t)—(o%+r)a(t)+ 0% ,(t) =0

d, =0

—2(0%+r%)a,(t) +30%,,(t)

The payoff condition
conditions

We start solving the system from the equation in solely
a ,(t) and obtain

implies the following final

1 a,(T)=-T, a(T)= a (T)

~Te 'Y,

Substituting in the next equation we obtain the linear
equation fora_, (t)

_Te_r(T_t)’

a,(t)+(o%—2r)

a,t) = a,(T)=0.

with the solution

(e(UZ—Zr)(T—t) _ e—r(T—t)) _

In order to solve forap(t), we choose the simplest
function satisfyingag(T) = 1, which isag(t) = 1. Solving
recursively for aj(t), j > 1, we obtain
at)=a(t)=---=0. Thereforel?) becomes

YR =143 a -

>1
T
~1_e (Tt
1-e =
T 2 1
(0°=2r)(T—t) _ o—r(T—t)\_—
t (e e ) = (18)

Substituting in {4) provides the approximate value of the
forward contrack = F(t, S, It)

F(LS) = SY(LES) =S (1+ Y a, 0S8k )
1>1

.
~S _e'(T-t)_
S-e N

T 2 1

(oe=2r)(T—t) _ o—r(T—t)\_—

+02—r(e © )s|t2'

This can be also written in terms of harmonic average
K =1/l as

.
R~g-e' Tz

142
+S )
We can also approach solving the aforementioned
system using the exponential of a matrix. We recall that
the exponential of am x n matrix A is then x n matrix
defined bye® = 5.0 A =In + A+ ZAZ+ IAS+ ...
In order to apply the aforemention method, the ODE
system for the coefficients;(t), j > 1, is written in the
following matrix form

T ( el0?=20)(T—t) _ e—r(T—t)) _ (19)

ag 0 -1 0 0--- ag
d|a| _ (0—(r+0? -2 0---| | &
dt |22 0 0 —(30%+2r)-30---| |%]"
or equivalently, aX(t)’ = AX(t), with the final condition
1 1
0 . 0 - . g
X(T)=1 0 |.SinceX(t)=| o | obviously verifies the

system, by the uniqueness theorem of linear ODE systems,
X(t) is the unique solution of the system. This implies

a(t) =1, ax(t) = as(t) =

The ODE system for the coefficiers; (t), j > 1, can
be written in the matrix form

. =0.

r 0
12r—
0

00-
— g200-

dt

a,(t) (
(@© 2015 NSP

a,(t)
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

2808 NS 2 F. Al-Azemi, O. Calin: Asian Options with Harmonic Average

or equivalentlyy (t)’ = BY(t), with the final condition approximation of the solution in the case of small
volatility o. Since foro — 0 we have
-T
0 1/ oy 0%\ 1+t
Y=o | (et )= -y+0(0), (3

the leading term, foo small, is% —Yy. Then the equation

The solution is given by (21) can be approximated by

7] 102 1+r 0
3 =25 (S Y gy
where cot(M) denotes the first column of matrid. In order to simplify the equation, we substitute=y —

1 u=1/2 andz(u,x) = U(1,y) to obtain the following
simplified version of the problerf21— 22)

Y(t) = ETUX(T) = —Tcolt (e AT Y),

6 The put-call parity

2
22 (G-og:
A put-call parity for the Asian strike options on harmonic u X jaxﬂm
average can be developed as in the following. Since we ~ Z(0,X) =max1—Te 0):=0(x)  (25)
have
W T —W T -1 T Let K(Xp,x;u) denote the heat kernel of the operaltor
b(Re, T) =Wp(Ry, T) =1~ R’ g—xzz —2xZ., i.e. K(xo,x u) verifies the equation2¢) and

satisfies the limit condition ligp, o K (X0, X; U) = &, where
0Oy, denotes the Dirac distribution.

Then the solution of the initial problen24)—(25) can
We(R:) ~We(R,1) =¥, Ost=T (20) be written as b 429

using a non-arbitrage opportunity argument yields

whereY; is a security that satisfies equatiaf),(paying at o
maturity Y, = 1 — RT—T, and having the value computed i~ Z(U,X) = /_OOK(X,YJ u)@(y)dy

the previous section, see formulksy. o
p IwI _ K(X, V) U) (1 _ Tef(GerlJrr)) dy
(InNT—r-1)/c
.. = K(x,y;u)d
7 Pricing the Call (nT-r-1)/o (xy;u)dy
In the virtue of the put-call parity it suffices to price only —Te (147) /(InT—r—l)/a e YK (x,y;u)dy

the call. Making the substitutions
=13(u,x) — Te" Iy (u,x).

1=T-t, y=(nR)/o, U(t,y)=W(R}t) (26)
we obtain Therefore, it suffices to find a formula for the heat kernel
oW U K(xo,x;u) and then to compute integralg(u,x) and
oR— = = I2(u,X). According to Theorem 10.28 of Calin and Chang
JR 0y [5], p. 223, we have:
1 szaZW 102U ooV
29T 9R T20y 20y Theorem 1.Let a € R. The heat kernel, K = K (xo,x; u), of

the operator 82 — axdy is given by
Therefore, the final condition problem fa¥, which is

given by (7 -8), becomes the following initial problem for K — 1 au e—% sy (04 -+x3) coshau) —2xx]
u(r,y) Vamu'\/ sinh(au) ’
with u > 0.

7} 192 1 g%\ 0

—U=-—=U+=(e?¥ —]=U 21

ot 2 dy? + g (e e 2 ) ay (21) Choosinga = 2, the above formula becomes
U(0,y) = max1l—Te 9,0). (22)

oy X( ) P p————— e )
The problem 21)—(22) is almost impossible to be solved e \/2msinh(2u)
explicitly. However, there are good chances to find an 27)
(@© 2015 NSP
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Using @7) we shall be able to compute explicitly the We shall compute next the integial(u, x).
integralsli(u,x) andlz(u,x) contained in the expression

_(26). .Th|s will .be. done using standqrd techniques »(U, ):/ e YK (x,y; u) dy
involving Gaussian integrals and completion to a square. (InT-r-1)/c

We shall start with the computation of the intedrelu, x). 2
ef—z—coﬂ'(Zu)

=—X
\/2msinh(2u)
/oo ef% coth(2u) (yzfﬁr?zu)y) —oy dy
) (InNT-r-1)/c
l1(u,x) = /(InT—rfl)/G K(x,y;u)dy efécoth(Zu)
=——X
o coth2u) \/21sinh(2u)
= /2msinh2u) | / ) g Beomiau (P2 ZEEEY)
/oo e*%coth(Zu) (VZ*WZKXZL,)Y) dy (lnTx—zr—l)/G | 2
(nT-r-1/0 _ e TN oot IS
o2 cottiau) g} SOt e \/2msinh(2u)
= © x—asinh2u)) \ 2
J2msinh2w) / g oo (y-5a)” g
( )2 (InNT—r-1)/o
« —3 coth(2u) (y— o5 x—asinh(2u))2
/(InT—r—l)/ae ’ T dy efé cotr(2u)e—( sinh(%uz) =
= = X
o % tank2u) \/2msinh(2u) coth(2u)
=—F——X * 12
\/2msinh(2u) / osnony € 20 02
*© 12 1 \ Cot}’(2u)(|“1—+*lf cosﬁzhl(s ))
e 2 ——dz
y/coth(2u
\/coth(2u) ( '”Tar’lfﬁm) r‘( ) (x=asinh2u)?  x2 coth(2u)
> 1 e sinh(4u) 2
_ 1 ef%tani(ZU)

\/cosh2u) V2 - \/cosh2u) |
™ 12 4y N(m(x—osmh(m)_InT—r—l)).

cosH?2u) o

V/coth(2u) ( InTar—l N cosﬁZu) )

_ #67%%“2”& Hence
\/cosh2u) 1 (x=osinh2u)? _ x2
N (/coth2 X LinToro1 IZ(U’X):\/TF(ZU)E a7 ONAIN(S), (30)
( coth( u)(cosk(ZU)_E(n - )))’
where

Xx—osinh2u) InT-r-1

where N(x) = \/%Tffme*%zz dz denotes the probability %= coth(2u)( cosh2u) o ) (31)

function of a standard normal random variable. Hence

Working back through the previous substitutions

1+4r InR
1 ra X=y——— y=— R=1S,
l1(u,X) = ————e 2 BM2IN(5) (28 o’ o’
(1) \/cosh2u) () (28) T T t ot
2 e
where and using that the price of the call is given by

C=V(St,#)=9N(Rt)=U(1,y) = Z(u,x),

X INT—-r—1 we conclude with the following result.
A= COth(zu)(cosr(Zu) o ) (29)

(@© 2015 NSP
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Theorem 2.For ¢ small, the price of a strike call option
on a harmonic average at timet is approximated by

CzSZ(%,%(In(%)—r—l)) (32)

where

Z(U,X) = |1(U,X) - Te_(1+r)|2(U,X),

with
l1(u,x) = #e‘étamzu)'\l(‘i)
" /cosh2u)
1 (xfo.siﬂ_xzcoth(%)
lo(UX) = —————g @) 2 N),
2(u,X) \/cosh2u) .
and
X |nT_r_1
b = Vo2 (S~ ——5 )
B Xx—osinh2u) InT-r-1
o= \/M( COS}'(ZU) o )
8 Discussion

bicharacteristics_curves are solutions of the Hamiltonian
systemx'= Hg, & = Hx. Their x-projection defines the
geodesic used for the computation of the heat kernel. A
straightforward computation of the ODE implied by the
Hamiltonian system, which is satisfied by the geodesic
X(s), is

%(s) = 2a%x3(s)

One difficulty of our problem is that this ODE has
infinitely many solutionsx,(s), n > 1, even for|x —y|
small. This means that the expression of the heat kernel
will involve an infinite sum of contributions along each
geodesio,(s). It is known that each contribution along
Xn(S) involves the amoung™s S whereS,(x,y;t) is

the action along the geodesig(s) from x toy in time't.

The action Sy(x,y;t) satisfies the Hamilton-Jacobi
equationd S, + H(x,0S,) = 0, a nonlinear equation that

is usually hard to be solved explicitly, fact that brings
another difficulty to the problem. Furthermore, even
harder is to compute the weights of the contributions
e 3S0¥, These are denoted Bya(x,y;t) and satisfy
certain transport equations, that describe how the volume
element evolves along the geodesic flow starting. df

all the above difficulties are overcome, the explicit

A natural question is whether we can obtain a bettergg|ytion of the heat kernel would be

approximation for the price of the call following the same

lines as before. Can the approximati@3)(be made more

accurate while all the previous computations can be still
carried out in an explicit form? If we go further with one

more degree of accuracy i23), we obtain

%(e*"y+r+ %2) = %yz—er <¥+%> 0(0?), 0 — 0.
(33)

Kxyt)=3y V(X y;t)e sS0i).

n>1

The coefficientsv,, and exponent&, can be computed
numerically if needed; however, no explicit formulas can
be worked out for them. The present paper deals only
with the approximation of the heat kernel with only the

main term, ie.,K(xy;t) ~ Vi(x,y;t)e sS0%) . The

It is worth noting that the expression on the right is «yolume elementVy(x,y;t) is also called the van Vieck

qguadratic iny, while in the case 0f43) the expression is

determinant and is obtained from the determinant of the

just linear iny. This makes an essential difference in matrix 3,9, S(x,y,t), see for instance Calin et ab][ Since
computation, which will be explained next. In order to from equation 24) we havep(y) > 0, then
carry out the computation, we need an analog of Theorem

1 to provide the heat kernel of the operatlfr — ax?dk.

Unfortunately, an explicit formula for the heat kernel of
this operator does not exist. Next we shall explain briefly

why this is the case.

00

/w K(x,y;u)g(y)dy > /w Va(x,y;t)e sV g(y) d,

and hence the foregoing approximation will lead to a lower

This type of operator has been analyzed for instancdimit for the price of the call on harmonic average.

in Calin and Changd], p. 223. It is known that the heat

kernel of a differential operatorkK(x,y;t), measured

betweernx andy in timet can be regarded as the amount

of heat starting at = 0 fromx and reaching in timet. It
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