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1 Introduction

The study of nonlinear evolution equations (NLEEs) is
growing at an alarming rate [1]-[29]. There are several
aspects of these equations are constantly being studied.
These are integrability issues, perturbation theory,
asymptotic analysis and other aspects. There are several
tools of integration of these equations are reported
[26]-[29] The results of these integration techniques
dwarfed the, once upon a time, monopoly of inverse
scattering transform (IST). Several NLEEs, that are
proved to be not integrable using IST, due to failure of
Painleve test of integrability, can produce a plethora of
solutions by these modern algorithms.

This paper will focus on one such NLEE that appears in
the study ofΦ-4 field theory. This is the complex-valued
Klein-Gordon equation (cKGE). This equation will be
studied in this paper with two forms of nonlinearity. They
are the cubic law and the power law. There are three
integration tools that will be applied to obtain several
forms of solutions, such as soliton solutions, shock waves,
plane waves, singular periodic solutions and others. These
three integration tools are the extended tanh-function

method, functional variable scheme and first integral
approach. The ansatz method was applied earlier to cKGE
to obtain soliton solutions and these solutions computed
conservation laws for this equation [7].

The dimensionless form of cKGE is given by [7]

qtt − k2qxx = aq+ bF
(

|q|2
)

q. (1)

In Eq. (1), dependent variableq(x, t) is a complex-valued
function. Herea, b and k are all real-valued constants.
Therefore the left hand side of (1) gives the wave
operator. Eq. (1) is studied in the context ofΦ-4 field
theory that appears in particles and fields. Moreover,
complex-valued KGE is a special case of Higgs equation
that appears in the context of interaction of scalar
nucleons and mesons in particle physics. So,q(x, t)
represents the complex scalar nucleon field.

The study of equation (1) will be divided into next three
different and independent sections. Each section will
focus on the integrability of the equation with the two
forms of nonlinearity. The results will then be displayed
into two subsections based on the type of nonlinearity in
study.
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2 The extended tanh-function method

The extended tanh function method is a powerful solution
method for the computation of exact traveling wave
solutions. This method is one of the most direct and
effective algebraic methods for finding topological and
non-topological 1-soliton solutions of NLEEs. Recently,
this useful method was developed successfully by many
authors [11, 15, 16, 17, 18, 23].

2.1 Introduction to the scheme

Consider the NLEE in the form

P1(u,ux,ut ,uxx,uxt , ...) = 0. (2)

Using the wave variableξ = x− vt carries Eq. (2) into the
following ordinary differential equation (ODE):

P2
(

U,U ′,U ′′, ...
)

= 0, (3)

where prime denotes the derivative with respect to the
same variableξ .

Then, the solution of Eq. (3) we are looking for is
expressed in the form of a finite series of tanh functions

U =
N

∑
l=0

al (G(ξ ))l , (4)

whereGl = tanhl(ξ ), N is a positive integer that can be
determined by balancing the highest order derivative with
the highest nonlinear terms in equation.

The parametersv, a0, ..., aN are to be determined. The
crucial step of the method is to take full advantage of a
Riccati equation that the tanh function satisfies and use its
solutionsG. The required Riccati equation is written as

G′(ξ ) = B+G2(ξ ). (5)

where G′ = dG/dξ and B is a constant. The Riccati
equation has the general solutions

If B < 0
G(ξ ) =−

√
−B tanh

(√
−Bξ

)

, (6)

G(ξ ) =−
√
−B coth

(√
−Bξ

)

.

If B = 0

G(ξ ) =− 1
ξ
. (7)

If B > 0
G(ξ ) =

√
B tan

(√
Bξ
)

, (8)

G(ξ ) =−
√

B cot
(√

Bξ
)

.

Substituting Eq. (4) into Eq. (3) by using Eq. (5) yields
a set of algebraic equations forGl , and all coefficients of
Gl have to vanish. After this separated algebraic equations,
we can find coefficientsv, B, a0, ..., aN .

2.2 Application to cKGE

This extended tanh-function approach will be applied to
cKGE. The study will be split into two subsections for
cubic and power law nonlinearity. The results will be
exposed in details in the following two subsections.

2.2.1 Cubic nonlinearity

For cubic nonlinearity,F(s) = s. For cubic nonlinearity,
the considered complex-valued Klein-Gordon equation
with cubic nonlinearity is given by

qtt − k2qxx = aq+ b |q|2 q. (9)

In order to solve Eq. (9), we use the following wave
transformation

q(x, t) =U(ξ )eiΦ(x,t) (10)

whereU(ξ ) represents the shape of the pulse and

ξ = x− vt, (11)

Φ (x, t) =−κx+ωt+θ . (12)

In Eq. (10), the functionΦ (x, t) is the phase component of
the soliton. Then, in Eq. (12),κ is the soliton frequency,
while ω is the wave number of the soliton andθ is the
phase constant. Finally in Eq. (11),v is the velocity of the
soliton. By replacing Eq. (10) into Eq. (9) and separating
the real and imaginary parts of the result, we have

v =
κk2

ω
, (13)

and

(v2− k2)U ′′−
(

a+ω2−κ2k2)U − bU3 = 0. (14)

BalancingU ′′ with U3 in Eq. (14) givesN = 1. Therefore,
we may choose

U(ξ ) = a0+ a1G(ξ ), (15)

whereG = G(ξ ) satisfies the Riccati equation

G′(ξ ) = B+G2(ξ ). (16)

Substituting Eq. (15) along with Eq. (16) in Eq. (14) and
equating all the coefficients of powers ofG(ξ ) to be zero,
we obtain

G3 : 2(v2− k2)a1− ba3
1 = 0, (17)

G2 : 3ba0a2
1 = 0, (18)

G1 : 3ba2
0a1+

(

a+ω2−κ2k2)a1

− 2(v2− k2)a1B = 0, (19)

G0 : ba3
0+
(

a+ω2−κ2k2)a0 = 0. (20)
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With the aid of Maple, we shall find the special solution of
the above system

a0 = 0

a1 = ±
√

2(v2− k2)

b
,

B =
a+ω2−κ2k2

2(v2− k2)
, (21)

wherev, ω , κ andθ are arbitrary constants. Therefore,
using solutions (6)-(8) of Eq. (5), ansatz (15), we obtain
the following exact solutions of the cKGE with cubic
nonlinearity:

Type-1: When(v2− k2)
(

a+ω2−κ2k2
)

< 0, we have

(1) Topological 1-soliton solution:

q(x, t) =±
√

κ2k2− a−ω2

b

× tanh

[

√

a+ω2−κ2k2

2(k2− v2)
(x− vt)

]

ei(−κx+ωt+θ), (22)

(2) Singular 1-soliton solution:

q(x, t) =±
√

κ2k2− a−ω2

b

×coth

[

√

a+ω2−κ2k2

2(k2− v2)
(x− vt)

]

ei(−κx+ωt+θ), (23)

wherev is given by (13).

Type-2: When(v2− k2)
(

a+ω2−κ2k2
)

> 0, we obtain

(3,4) Singular periodic solutions:

q(x, t) =±
√

a+ω2−κ2k2

b

× tan

[
√

a+ω2−κ2k2

2(v2− k2)
(x− vt)

]

ei(−κx+ωt+θ), (24)

and

q(x, t) =±
√

a+ω2−κ2k2

b

×cot

[

√

a+ω2−κ2k2

2(v2− k2)
(x− vt)

]

ei(−κx+ωt+θ), (25)

wherev is given by (13).

The following figure shows the profiles of a topological
soliton for the chosen parameters.

Fig. 1: The profiles of a topological soliton for the chosen
parameters.

2.2.2 Power law nonlinearity

Power law nonlinearity arises whenF(s) = sn, where the
parametern is referred to as the nonlinearity parameter.
For power law nonlinearity, the cKGE takes the form

qtt − k2qxx = aq+ b |q|2n q. (26)

For searching the one-soliton solution for the above model,
we use the same wave transformation

q(x, t) =U(ξ )eiΦ(x,t) (27)

whereU(ξ ) represents the shape of the pulse and

ξ = x− vt, (28)

Φ (x, t) =−κx+ωt+θ . (29)

By replacing Eq. (27) into Eq. (26) and separating the real
and imaginary parts of the result, we have

v =
κk2

ω
, (30)

and

(v2− k2)U ′′−
(

a+ω2−κ2k2)U − bU2n+1 = 0. (31)

BalancingU ′′ with U2n+1 in Eq. (31) givesN = 1/n.

To obtain an analytic solution, we use the transformation
U =V

1
2n in Eq. (31) one finds

(v2− k2)
{

(1−2n)(V ′)2+2nVV ′′}

−4
(

a+ω2−κ2k2)n2V 2−4bn2V 3 = 0. (32)

Balancing the order ofVV ′′ andV 3 in Eq. (32), we have
N = 2. Therefore, one choses

V (ξ ) = a0+ a1G(ξ )+ a2G2(ξ ), (33)
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whereG = G(ξ ) satisfies the Riccati equation

G′(ξ ) = B+G2(ξ ). (34)

Substituting Eq. (33) along with Eq. (34) in Eq. (32) and
equating all the coefficients of powers ofG(ξ ) to be zero,
we obtain

G6 : −4bn2a3
2+4(v2− k2)(1+ n)a2

2 = 0, (35)

G5 : −12bn2a1a2
2+4(v2− k2)(1−2n)a1

+ 16(v2− k2)na1a2 = 0, (36)

G4 : (v2− k2)(1+2n)a2
1−12bn2a2

1a2

+ 8(v2− k2)(1−2n)Ba2
2

+ 12(v2− k2)na0a2+16(v2− k2)nBa2
2

− 4
(

a+ω2−κ2k2)n2a2
2−12bn2a0a2

2 = 0, (37)

G3 : 4(v2− k2)na0a1−24bn2a0a1a2

+ 20n(v2− k2)a1a2B+8(1−2n)(v2− k2)Ba1a2

− 8
(

a+ω2−κ2k2)n2a1a2−4bn2a3
1 = 0, (38)

G2 : 4(1−2n)(v2− k2)B2a2
2+4nB2(v2− k2)a2

2

− 8
(

a+ω2−κ2k2)n2a0a2−12bn2a2
0a2

+ 16(v2− k2)nBa0a2+2(v2− k2)(1−2n)Ba2
1

+ 4nB(v2− k2)a2
1−4

(

a+ω2−κ2k2)n2a2
1

− 12bn2a0a2
1 = 0, (39)

G1 : 4(1−2n)(v2− k2)a1B2+4n(v2− k2)B2a1a2

+ 4(v2− k2)na0a1B−12bn2a2
0a1

− 8
(

a+ω2−κ2k2)n2a0a1 = 0, (40)

G0 : −4bn2a3
0−4

(

a+ω2−κ2k2)n2a2
0

+ 4(v2− k2)nB2a0a2+(v2− k2)(1−2n)B2a2
1 = 0.(41)

Solving the system (Eqs. (35)-(41)) simultaneously, we get
the solutions set

a0 =
B(v2− k2)(1+ n)

bn2

a1 = 0,

a2 =
(v2− k2)(1+ n)

bn2 ,

ω = ±
√

n2(κ2k2− a)+B(k2− v2)

n
, (42)

wherev, B, κ and θ are arbitrary constants. Therefore,
using solutions (6)-(8) of Eq. (5), ansatz (33), we obtain
the following exact solutions of the cKGE with cubic
nonlinearity:

(1) Soliton solutions

q(x, t) =

[

B(v2− k2)(1+ n)
bn2 sech2

(√
−B(x− vt)

)

]

1
2n

×e
i

(

−κx±
{√

n2(κ2k2−a)+B(k2−v2)
n

}

t+θ

)

,

(43)

Fig. 2: The profile of a solitary wave fora =, b =, k = 1 and
n = 1.

q(x, t) =

[

B(k2− v2)(1+ n)
bn2 csch2

(√
−B(x− vt)

)

]

1
2n

×e
i

(

−κx±
{√

n2(κ2k2−a)+B(k2−v2)
n

}

t+θ

)

,

(44)

wherev is given by (30).

(2) Periodic singular solutions

q(x, t) =

[

B(v2− k2)(1+ n)
bn2 sec2

(√
B(x− vt)

)

]

1
2n

×e
i

(

−κx±
{√

n2(κ2k2−a)+B(k2−v2)
n

}

t+θ

)

, (45)

q(x, t) =

[

B(v2− k2)(1+ n)
bn2 csc2

(√
B(x− vt)

)

]

1
2n

×e
i

(

−κx±
{√

n2(κ2k2−a)+B(k2−v2)
n

}

t+θ

)

, (46)

wherev is given by (30).

(3) Plane wave solution

q(x, t) =

[

(v2− k2)(1+ n)
bn2

1

(x− vt)2

]
1
2n

×e
i
(

−κx±
{√

κ2k2−a
}

t+θ
)

, (47)

wherev is given by (30).

The following figure shows the profile of a solitary wave
for a =, b =, k = 1 andn = 1.
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3 Functional variable method

This is the second integration algorithm that will be
implemented to integrate cKGE. This method will
integrate cKGE with power-law nonlinearity so that
results for cubic nonlinearity will fall out as a special
case. The first subsection will be a succinct introduction
to this algorithm, followed by the application to the
equation.

3.1 Preview of the algorithm

The functional variable method, which is a direct and
effective algebraic method for the computation of
compactons, solitons, solitary patterns and periodic
solutions, was first proposed by Zerarka et al [24]. This
method was further developed by many authors in [9,10,
20,25]. We now summarize the functional variable
method, established by Zerarka et al [24], the details of
which can be found in [9,10,20,25] among many others.
Consider a general NLEE in the form

P

(

u,
∂u
∂ t

,
∂u
∂x

,
∂ 2u
∂ t2 ,

∂ 2u
∂x2 ,

∂ 2u
∂ t∂x

, ...

)

= 0, (48)

whereP is a polynomial inu and its partial derivatives.
Using a wave variableξ = x− vt so that

u(x, t) =U(ξ ), (49)

Eq. (48) can be converted to an ordinary differential
equation (ODE) as

Q
(

U,U ′,U ′′,U ′′′, ...
)

= 0, (50)

whereQ is a polynomial inU = U(ξ ) and prime denotes
derivative with respect toξ . If all terms contain
derivatives, then Eq. (50) is integrated where integration
constants are considered zeros.

Let us make a transformation in which the unknown
functionU(ξ ) is considered as a functional variable in the
form

Uξ = F(U) (51)

and some successively derivatives ofU are

Uξ ξ =
1
2
(F2)′, (52)

Uξ ξ ξ =
1
2
(F2)′′

√
F2,

Uξ ξ ξ ξ =
1
2
[(F2)′′′F2+(F2)′′(F2)′],

where′ = d/dU .

The ODE (50) can be reduced in terms ofU, F and its

derivatives upon using the expressions of Eq. (52) into
Eq. (50) gives

R(U,F,F ′,F ′′,F ′′′, ...) = 0. (53)

The key idea of this particular form Eq. (53) is of special
interest because it admits analytical solutions for a large
class of nonlinear wave type equations. After integration,
the Eq. (53) provides the expression ofF , and this in turn
together with Eq. (51) give the relevant solutions to the
original problem.

Remark-I: The functional variable method definitely can
be applied to nonlinear NLEEs which can be converted to
a second order ordinary differential equations (ODE)
through the traveling wave transformation.

3.2 Application to cKGE

While functional variable method is not applicable to
cKGE with cubic nonlinearity, this algorithm will
integrate the NLEE with power law nonlinearity.
Subsequently, the results for cubic nonlinearity will fall
out as a special case upon settingn = 1. These are
discussed in the subsections below.

3.2.1 Power law nonlinearity

In this section we study the complex-valued
Klein-Gordon equation with power law nonlinearity in
the following form:

qtt − k2qxx = aq+ b |q|2n q. (54)

We use the transformation

q(x, t) =U(ξ )ei(−κx+ωt+θ), ξ = x− vt, (55)

whereκ , ω , θ andv are constants to be determined later.

By replacing Eq. (55) into Eq. (54) and separating the real
and imaginary parts of the result, we have

v =
κk2

ω
, (56)

and

(v2− k2)U ′′−
(

a+ω2−κ2k2)U − bU2n+1 = 0. (57)

Then we use the transformation

Uξ = F(U), (58)

that will convert Eq. (57) to

(v2− k2)

2
(F2(U))′

−
(

a+ω2−κ2k2)U − bU2n+1 = 0. (59)
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Thus, we get from Eq. (59) the expression of the function
F(U) reads

F(U) =

√

a+ω2−κ2k2

v2− k2 U

×
√

1+
b

(n+1)(a+ω2−κ2k2)
U2n (60)

After making the change of variables

Z =− b
(n+1)(a+ω2−κ2k2)

U2n, (61)

and using the relation (58), the solution of the Eq. (57) is
in the following form

U(ξ ) =
{

− (n+1)(a+ω2−κ2k2)

b

×sech2



n

√

a+ω2−κ2k2

v2− k2 ξ





}
1
2n
. (62)

We can easily obtain the following hyperbolic solutions:

q(x, t) =
{

− (n+1)(a+ω2−κ2k2)

b

×sech2



n

√

a+ω2−κ2k2

v2− k2 (x− vt)





}
1
2n

×ei(−κx+ωt+θ), (63)

and

q(x, t) =
{ (n+1)(a+ω2−κ2k2)

b

×csch2



n

√

a+ω2−κ2k2

v2− k2 (x− vt)





} 1
2n

×ei(−κx+ωt+θ), (64)

wherev is given by (56).

Remark-II: The exact solutions (63) and (64) obtained
for the complex-valued Klein-Gordon equation with
power law nonlinearity is the same as the solution
obtained by Biswas et al. [7] who used the solitary wave
ansatz method.

It is easy to see that solutions (63) and (64) can reduce to
singular periodic solutions as follows:

q(x, t) =
{

− (n+1)(a+ω2−κ2k2)

b

×sec2



n

√

−a+ω2−κ2k2

v2− k2 (x− vt)





} 1
2n

×ei(−κx+ωt+θ), (65)

and

q(x, t) =
{

− (n+1)(a+ω2−κ2k2)

b

×csc2



n

√

−a+ω2−κ2k2

v2− k2 (x− vt)





}
1
2n

×ei(−κx+ωt+θ), (66)

wherev is given by (56).

3.2.2 Cubic nonlinearity

For this integration algorithm, the results of cKGE with
cubic nonlinearityy will fall out as a special case of power
law nonlinearity upon settingn = 1. In Eqs. (63)-(64), If
we taken = 1, then we obtain the following solitary wave
solutions

q(x, t) =

√

−2(a+ω2−κ2k2)

b

×sech





√

a+ω2−κ2k2

v2− k2 (x− vt)



ei(−κx+ωt+θ), (67)

and

q(x, t) =

√

2(a+ω2−κ2k2)

b

×csch





√

a+ω2−κ2k2

v2− k2 (x− vt)



ei(−κx+ωt+θ). (68)

It is easy to see that solutions (67) and (68) can reduce to
singular periodic solutions as follows:

q(x, t) =

√

−2(a+ω2−κ2k2)

b

×sec





√

−a+ω2−κ2k2

v2− k2 (x− vt)



ei(−κx+ωt+θ), (69)

and

q(x, t) =

√

−2(a+ω2−κ2k2)

b

×csc





√

−a+ω2−κ2k2

v2− k2 (x− vt)



ei(−κx+ωt+θ). (70)

4 First integral approach

One of the most effective direct methods to develop the
traveling wave solution of NLEEs is the first integral
method [12]. This method has been successfully applied
to obtain exact solutions for a variety of NLEEs [2,3,4,
19]. Different from other traditional methods, the first
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integral method has many advantages, which is mainly
embodied in that it could avoid a great deal of
complicated and tedious calculation and provide more
exact and explicit traveling solitary solutions with high
accuracy.

4.1 Overview of the method

Bekir et al. [16] summarized the main steps for using the
first integral method, as follows:

Step-I: Suppose a NLEE

P(u,ut ,ux,utt ,uxt ,uxx, ...) = 0, (71)

can be converted to an ODE

Q(U,−ωU ′,kU ′,ω2U ′′,−kωU ′′,k2U ′′, ...) = 0, (72)

using a traveling wave variable
u(x, t) = U(ξ ), ξ = kx − ωt, where the prime denotes
the derivation with respect toξ . If all terms contain
derivatives, then Eq. (72) is integrated where integration
constants are considered zeros.

Step-II: Suppose that the solution of ODE (72) can be
written as follows:

u(x, t) =U(ξ ) = f (ξ ). (73)

Step-III: We introduce a new independent variable

X(ξ ) = f (ξ ), Y (ξ ) = f ′(ξ ), (74)

which leads a system of

X ′(ξ ) = Y (ξ ), (75)

Y ′(ξ ) = F(X(ξ ),Y (ξ )).

Step-IV: By using the Division Theorem for two variables
in the complex domainC which is based on the
Hilbert-Nullstellensatz Theorem [13], we can obtain one
first integral to Eq. (75) which can reduce Eq. (72) to a
first-order integrable ordinary differential equation. An
exact solution to Eq. (71) is then obtained by solving this
equation directly.

Division Theorem: Suppose thatP(w,z) andQ(w,z) are
polynomials in C[w,z]; and P(w,z) is irreducible in
C[w,ν]. If Q(w,z) vanishes at all zero points ofP(w,z),
then there exists a polynomialG(w,z) in C[w,z] such that

Q(w,z) = P(w,z)G(w,z).

4.2 Application to cKGE with cubic nonlinearity

In this subsection, we would like to extend the first
integral method to solve the complex-valued
Klein-Gordon equation with cubic nonlinearity

qtt − k2qxx = aq+ b |q|2 q. (76)

Substituting the traveling wave transformation, we use

q(x, t) =U(ξ )ei(−κx+ωt+θ), ξ = x− vt, (77)

whereκ , ω , θ andv are constants to be determined later.

By replacing Eq. (77) into Eq. (76) and separating the real
and imaginary parts of the result, we have

v =
κk2

ω
, (78)

and

(v2− k2)U ′′−
(

a+ω2−κ2k2)U − bU3 = 0. (79)

If we let X(ξ ) = U(ξ ), Y (ξ ) = dU(ξ )
dξ , the Eq. (79) is

equivalent to the two dimensional autonomous system

X ′(ξ ) = Y (ξ ),

Y ′(ξ ) =
(

a+ω2−κ2k2

v2− k2

)

X(ξ )+
b

v2− k2 X3(ξ ). (80)

Now, we apply the above division theorem to look for the
first integral of system (80). Suppose thatX(ξ ) andY (ξ )
are nontrivial solutions to system (80), and
Q(X ,Y ) = ∑m

l=0 al(X)Y l is an irreducible polynomial in
the complex domainC such that

Q(X(ξ ),Y (ξ )) =
m

∑
l=0

al (X(ξ ))Y l(ξ ) = 0, (81)

where al(X)(l = 0,1, ...,m) are polynomials ofX and
am(X) 6= 0. Eq. (81) is a first integral of system (80). We
note that dQ/dξ is a polynomial in X and Y, and
Q(X(ξ ),Y (ξ )) = 0 implies that dQ/dξ |(80) = 0.
According to the division theorem, there exists a
polynomial T (X ,Y ) = g(X) + h(X)Y in the complex
domainC such that
dQ
dξ

=
dQ
dX

dX
dξ

+
dQ
dY

dY
dξ

= (g(X)+ h(X)Y)
m

∑
l=0

al(X)Y l . (82)

We assume thatm = 1 in Eq. (81). Taking Eqs. (80) and
(82) into account, we get

1

∑
l=0

a′l(X)Y l+1+

((

a+ω2−κ2k2

v2− k2

)

X +
b

v2− k2 X3
)

(

1

∑
l=0

lal(X)Y l−1

)

= (g(X)+ h(X)Y)
1

∑
l=0

al(X)Y l , (83)
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where the primes denote derivatives with respect toX .
Equating the coefficients ofY l(l = 2,1,0) in Eq. (83)
leads to the system

a′1(X) = h(X)a1(X), (84)

a′0(X) = g(X)a1(X)+ h(X)a0(X), (85)

a1(X)

{(

a+ω2−κ2k2

v2− k2

)

X +
b

v2− k2 X3
}

= g(X)a0(X).

(86)
Sinceal(X) (l = 0, 1) are polynomials, then from Eq.
(84) we deduce thata1(X) is constant andh(X) = 0. For
simplicity, takea1(X) = 1. Balancing the degrees ofg(X)
and a0(X), we conclude that deg(g(X)) = 1 only.
Suppose thatg(X) = A1X +B0, then we finda0(X).

a0(X) = A0+B0X +
A1

2
X2, (87)

whereA0 is arbitrary integration constant.

Substitutinga0(X) andg(X) into Eq. (86) and setting all
the coefficients of powersX to be zero, then we obtain a
system of nonlinear algebraic equations and by solving it,
we obtain

B0 = 0, A1 =±
√

2b
v2− k2 , A0 =∓a+ω2−κ2k2

√

2b(v2− k2)
(88)

whereκ , ω andθ are arbitrary constants.

Using the conditions (88) in Eq. (82), we obtain

Y (ξ ) =∓
√

b
2(v2− k2)

X2(ξ )± a+ω2−κ2k2
√

2b(v2− k2)
. (89)

Combining (89) with (80), we obtain the exact solution to
Eq. (79) and then exact solutions for the cKGE equation
with cubic nonlinearity can be written as:

Type-1: When(v2− k2)
(

a+ω2−κ2k2
)

< 0, we have

(1) Topological 1-soliton solution:

q(x, t) =±
√

κ2k2− a−ω2

b

× tanh

[
√

a+ω2−κ2k2

2(k2− v2)
(x− vt)

]

ei(−κx+ωt+θ), (90)

(2) Singular 1-soliton solution:

q(x, t) =±
√

κ2k2− a−ω2

b

×coth

[
√

a+ω2−κ2k2

2(k2− v2)
(x− vt)

]

ei(−κx+ωt+θ), (91)

wherev is given by (78).

Type-2: When(v2− k2)
(

a+ω2−κ2k2
)

> 0, we obtain

(3,4) Singular periodic solutions:

q(x, t) =±
√

a+ω2−κ2k2

b

× tan

[

√

a+ω2−κ2k2

2(v2− k2)
(x− vt)

]

ei(−κx+ωt+θ), (92)

and

q(x, t) =±
√

a+ω2−κ2k2

b

×cot

[

√

a+ω2−κ2k2

2(v2− k2)
(x− vt)

]

ei(−κx+ωt+θ), (93)

wherev is given by (78).

5 Conclusions

This paper addressed the integrability aspects of cKGE.
There are three integration tools applied to extract
solutions to the equation. Solitons and other solutions are
obtained. There are constraint conditions that are obtained
for the existence of these solutions. The results of this
paper will be of great importance inΦ-4 field theory.

In future, there are additional integration algorithms that
will be implemented to obtain several other forms of
solutions. The cKGE with perturbation terms will also be
studied. The results of those research will give an edge
over the current and former results.
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