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Abstract: This paper deals with further developments on a mathematical model recently proposed for the modeling of the acute
inflammatory response to infection or trauma. In particularin order to take into account that some interactions have notan immediate
effect, we introduce time delays. Specifically the paper deals with the existence of steady states, determining the parameter regimes
where the equilibrium points are stable, and the onset of Hopf bifurcation appears. Numerical simulations are performed with the main
aim of supporting the analytical results and investigate further dynamics.
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1 Introduction

The problem of abnormal organ repair has gained much
attention considering that there is a significant shortage of
organs available for transplantation. In this context the
normal repair process, i.e. wound healing process,
assumes an important role. Wound healing is an complex
process by which the skin or organ repairs itself after
injury [1,2]. Specifically wound healing comprises three
sequential, overlapping, phases: the inflammation phase
(hemostasis and the actual inflammation), the
proliferation phase, and the maturation (remodeling)
phase. Hemostasis occurs immediately after tissue injury
and can be compared with the acute phase reaction of the
innate immune system during infection. The first cells to
appear in the wound area are neutrophils which start with
the critical task of phagocytosis in order to destroy and
remove bacteria, foreign particles and damaged tissue.
Phagocytotic activity is crucial for the subsequent
processes, because acute wounds that have a bacterial
imbalance will not heal. The macrophage becomes the
predominant inflammatory cell type in clean noninfected
wounds. Every phase of the healing process consists of
complex interactions between cells and mediators which
tend to regulate the process. Cells participating in wound

healing must be activated, i.e. undergo phenotypic
alterations of cellular, biochemical, and functional
properties.

During the inflamation phase, the immune system
performs a fundamental action, see [3,4,5]. The response
of the immune system to an infectious agent is subdivided
into two main categories: Innate (non-specific) immunity
response, which is mediated by granulocytes,
macrophages, and NK cells [6]; Adaptive (specific,
acquired) immune response, which is mediated by the
lymphocytes [7]. The innate immune system is
constitutively active and reacts immediately to infection.
The adaptive immune response to an invading organism
takes some time to develop.

Different mathematical models have been proposed
for the modeling of immune system response [8,9].
Specifically mathematical models based on ordinary
differential equations [10,11,12,13], partial differential
equations [14,15], kinetic theory approach [16,17] and
continuum mechanics approach [18]. In the pertinent
literature computational models have been also proposed,
see [19] and the review paper [20]. However the previous
cited models are based on instantaneous interactions thus
avoiding to take into account that various phenomena
occur with some delay. In order to overcome this issue,

∗ Corresponding author e-mail:carlo.bianca@polito.it

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/090603


2776 C. Bianca et al.: A Delayed Mathematical Model for the Acute...

delayed models have been proposed in population
dynamics [21,22], in immunology [23,24], for tumor
formation [25,26,27], for economic systems [28,29,30,
31] and specifically in the study of the Solow model [32,
33], of the Dalgaard-Strulik model [34], of the credi risk
contagion [35], and in the asset of price [36]. The
introduction of time delay allows to enrich the description
of the dynamics of a system in particular by changing the
stability of the steady state and triggering onset of Hopf
bifurcation.

This paper is concerned with further investigations on
a mathematical model recently proposed in [37] for the
modeling of the acute inflammatory response to infection
or trauma. In particular in order to take into account that
some interactions have not an immediate effect, we
introduce time delays. Specifically the paper deals with
the existence of steady states, determining the parameter
regimes where the fixed points are stable, and the onset of
Hopf bifurcation appears. As known a steady state
belongs to the nullclines of the system and it is stable if
the real part of each eigenvalue associated with the
linearized system at that fixed point is negative. A
bifurcation occurs when a change in a parameter alters the
number of fixed points and/or their stability.

The contents of the present paper are organized as
follows. After this introduction, Section 2 is devoted to
the mathematical analysis (existence of steady states and
Hopf bifurcation) of the delayed pathogen equation,
which shares various properties with the delayed model
proposed in Section 3 which consists of a system of two
delayed differential equations where the independent
variables represent the levels of pathogen and the
activated phagocytes (e.g. neutrophils); the model is built
up from consideration of direct interactions of
fundamental effectors and does not include components
of the adaptive immune response, i.e. T-cells and specific
antibodies. Numerical simulations are also performed
within the Section 3 with the main aim of supporting the
analytical results and investigating further nonlinear
dynamics. Finally Section 4 is concerned with concluding
remarks and further research perspectives.

2 The delayed pathogen equation

It is known that when an individual undergoes an injury,
at the wound there exists a sentinel level of immune
system cells (local immune responseM) able to respond
and remove local infections (pathogensP). According to
[37] we assume that:

• M is inhibited at the ratekmp when it interacts withP at
time t;

• P is inhibited at the ratekpm when it interacts withM at
time t;

• sm models a source ofM;

• µm models the death ofM.

Moreover we introduce a time delayτ ≥ 0 into the
equation ofP as follows:







.
M = sm− µmM− kmpMP

.
P=−kpmMPτ

wherePτ = P(t − τ). Bearing [37] in mind thus we have

.
P= kpgP

(

1− P
p∞

)

− kpmsmPτ

µm+ kmpP
, (1)

where kpg is the pathogen growth rate andp∞ is the
carrying capacity of the pathogen population.
In what follows, the above parameters will be assumed
nonnegative.

2.1 Steady states and stability analysis

The steady states of Eq. (1) are such that the time
derivative

.
P vanishes identically. It is immediate to see

that the fixed points of Eq. (1) coincide with those for
τ = 0. In particularP∗ = 0 is always a fixed point of Eq.
(1). The other fixed pointsP∗ are solution of the following
algebraic equation:

kpg

(

1− P∗
p∞

)

− kpmsm

µm+ kmpP∗
= 0,

namely if

kpgkmpP
2
∗ + kpg(µm− kmpp∞)P∗+

p∞ (kpmsm− kpgµm) = 0. (2)

The discriminant of Eq. (2) reads

∆ = kpg

[

kpg(µm+ kmpp∞)
2−4kmpkpmsmp∞

]

, (3)

then Eq. (1) also admits the fixed point

P∗ = (kmpp∞ − µm)/2kmp

if
kpg= 4kmpkpmsmp∞/(p∞kmp+ µm)

2,

and the fixed pointP∗ = p1 andP∗ = p2, p1 < p2, with

P∗ =
kpg(kmpp∞ − µm)±

√
∆

2kpgkmp

if kpg > 4kmpkpmsmp∞/(p∞kmp+ µm)
2.

In [37] Reynolds et al. have shown thatP∗ = 0 is stable for
kpg < kpmsm/µm, andP∗ = p2 is stable whenever it exists.
Henceforth, in what follows we will deal only with these
two stable fixed points.
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Bearing all above in mind, the linearized equation of
Eq. (1) around one of these two stable fixed pointsP∗ is

.
P= a(P−P∗)+b(Pτ −P∗) , (4)

where ifP∗ = 0 we have

a= kpg and b=−kpmsm

µm

and ifP∗ =
kpg(kmpp∞ − µm)+

√
∆

2kpgkmp

a= kpg

[

1− 2P∗
p∞

+

(

1− P∗
p∞

)2 kmpkpgP∗
kpmsm

]

and b=−kpg

(

1− P∗
p∞

)

The associated characteristic equation of (4) reads

λ −a−be−λ τ = 0. (5)

It is well known that the fixed pointP∗ of Eq. (1) is
locally asymptotically stable if each of the characteristic
roots of Eq. (5) has negative real parts. Hence, the
marginal stability is determined by the equationsλ = 0
andλ = iω , ω > 0. It is clear that the caseλ = 0 cannot
occur becausea+ b < 0. Let λ = iω be a root of the
characteristic equation (5) with ω > 0. Substituting it into
(5) and separating the real and imaginary parts yields

a=−bcosωτ, ω =−bsinωτ. (6)

Squaring each equation in (6), taking the sum and
employing sin2 ωτ + cos2 ωτ = 1, we have

ω2 = b2−a2. (7)

It is easy to see that Eq. (7) has one positive solution

ω0 =
√

b2−a2

if |b| > |a|. From (6), one can obtain the valueτ0
corresponding toω0 as follows:

τ0 =



















1
ω0

tan−1
(ω0

a

)

, if a> 0,

1
ω0

tan−1
(ω0

a

)

+2π , if a< 0.

One can also see that the purely imaginary rootiω0 is
simple. If we suppose by contradictionλ = iω0 to be a
repeated root of (5), then differentiating (5) with respect
to λ , insertingλ = iω0, and using (5), leads toω0 = 0,
which gives a contradiction.

2.2 On the Hopf bifurcation

The conditions under which a Hopf bifurcation occurs at
τ0 are verified except for the transversality condition. Let
λ (τ) be the root of (5) nearτ = τ0 such that Re(λ (τ0)) = 0
and Im(λ (τ0)) = ω0. Differentiating both sides of Eq. (5)
with respect toτ, we have

(

dλ
dτ

)−1

=− 1
λ (λ −a)

− τ
λ
.

Thus, we obtain

sign

{

d (Reλ )
dτ

∣

∣

∣

∣ τ=τ0ω=ω0

}

= sign

{

Re

(

dλ
dτ

)−1

τ=τ0ω=ω0

}

= sign

{

1

ω2
0 +a2

}

. (8)

Since the sign of (8) is positive, whenλ = iω0, the
only crossing of the imaginary axis is from left to right as
τ increases. Consequently, the stability of the steady state
P∗ can only be lost and not regained.

Bearing all the above analysis in mind, we can state the
main result of this section.

Theorem 1.Let ∆ be defined by Eq.(3).

1)If kpg < kpmsm/µm, then the steady state P∗ = 0 of Eq.
(1) is locally asymptotically stable forτ < τ0 and
unstable forτ > τ0, where

τ0 =
1

ω0
tan−1

(

ω0

kpg

)

, ω0 =

√

(

kpmsm

µm

)2

− k2
pg.

Furthermore, Eq.(1) undergoes a Hopf bifurcation at
P∗ = 0 whenτ = τ0.

2)If kpg> 4kmpkpmsmp∞/(p∞kmp+ µm)
2 and

1− P∗
p∞

>

∣

∣

∣

∣

∣

1− 2P∗
p∞

+

(

1− P∗
p∞

)2 kmpkpgP∗
kpmsm

∣

∣

∣

∣

∣

,

the steady state

P∗ = p2 =
[

kpg(kmpp∞ − µm)+
√

∆
]

/2kpgkmp

of Eq. (1) is locally asymptotically stable forτ < τ0
and unstable forτ > τ0, where

τ0 =



















1
ω0

tan−1 τ̃0, if α > 0,

1
ω0

tan−1 τ̃0+2π , if α < 0,

and

τ̃0 =
ω0

kpg

[

1− 2P∗
p∞

+

(

1− P∗
p∞

)2 kmpkpgP∗
kpmsm

] ,
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α = 1− 2P∗
p∞

+

(

1− P∗
p∞

)2 kmpkpgP∗
kpmsm

,

ω0 = kpg

√

(

1− P∗
p∞

)2

−α2.

Furthermore, Eq.(1) undergoes a Hopf bifurcation at
P∗ = p2 whenτ = τ0.

3 The delayed model with the immune
system response

In this section we couple the pathogen equation analyzed
in the previous section with the role of phagocytic
immune system cells (neutrophils and macrophages).
Bearing paper [37] in mind, we modify the model
proposed in [37] by introducing two time delaysτ1 ≥ 0
andτ2 ≥ 0 as follows:

.
P= kpgP

(

1− P
p∞

)

− kpmsmPτ1

µm+ kmpP
− kpnN

∗P, (9)

.

N∗ =
snr

(

knnN∗
τ2
+ knpPτ2

)

µnr +(knnN∗+ knpP)
− µnN∗, (10)

where P and N∗ represent the levels of pathogen and
activated phagocytes, respectively and

• kpn is the rate at whichN∗ consumeP;

• snr is the source of resting phagocytes;

• µnr is the decay rate of resting phagocytes;

• knn is the activation of resting phagocytes by previously
activated phagocytes and their cytokines;

• µn is the decay rate of activated phagocytes;

• knp is the activation rate of resting phagocytes by pa
thogen.

It is worth stressing that with respect paper [37], the above
model is derived by considering the delayed equations

.
P=

−kpmMPτ1 and
.

N∗ = (knnN∗+ knpP)τ2
NR− µnN∗, where

NR is the population of the resting phagocytes.

3.1 Steady states and stability analysis

The steady states of system (9)-(10) are obtained by

setting
.
P =

.
N∗ = 0, Pτ1 = P and N∗

τ2
= N∗ for all t.

Therefore, when there is no time delay, i.e.τ1 = τ2 = 0,
we recover the model considered in Section 2.2 of paper
[37], and in particular there exists the fixed point
(P,N∗) = (0,0) (health steady state). It is important to
note that the delayed model admits also a steady state
(P,N∗) 6= (0,0) which represents the inflammation steady

state (septic death state); this state will be analyzed in the
next subsection by performing numerical simulations.

Linearization of system (9)-(10) in the neighborhood
of the trivial steady state produces the system

.
P= kpgP− kpmsm

µm
Pτ1,

.

N∗ =−µnN∗+
snrknp

µnr
Pτ2 +

snrknn

µnr
N∗

τ2
.

So the associated characteristic equation is given by

∣

∣

∣

∣

∣

∣

∣

∣

∣

kpg−λ − kpmsm

µm
e−λ τ1 0

snrknp

µnr
e−λ τ2 −µn−λ +

snrknn

µnr
e−λ τ2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

namely

D(λ ,τ1,τ2)≡ D1(λ ,τ1) ·D2(λ ,τ2) = 0, (11)

where

D1(λ ,τ1) = λ − kpg+
kpmsm

µm
e−λ τ1,

D2(λ ,τ2) = λ + µn−
snrknn

µnr
e−λ τ2.

It is known from [37] that, whenτ1 = τ2 = 0, the
corresponding eigenvalues of (11) are real and given by
λ = (kpgµm− kpmsm)/µm andλ = (snrknn− µnµnr)/µnr.
In what follows we assume that the inequality
snrknn < µnµnr holds true. Consequently, in absence of
delays, the steady state(0,0) of system (9)-(10) is locally
asymptotically stable ifkpg < kpmsm/µm.

Letting the time delaysτ1 and τ2 varied, the trivial
fixed point of system (9)-(10) may lose its stability. In
order to consider the effects of the time delay, we need to
investigate the boundary of the stability region
determined by the equationsλ = 0 andλ = iω (ω > 0).
Letting λ = 0 in (11), one has thatD(0,τ1,τ2) 6= 0 having
assumed thatkpgµm − kpmsm < 0. Thus, only the case
λ = iω (ω > 0) needs to be analyzed.

3.1.1 Caseτ1 > 0 andτ2 = 0

Eq. (11) becomesD(λ ,τ1,0) ≡ D1(λ ,τ1) ·D2(λ ,0) = 0.
Let λ = iω (ω > 0) be a root ofD(λ ,τ1,0) = 0. Since
D2(iω ,0) 6= 0, λ = iω has to solve
D1(λ ,τ1) ≡ λ − kpg + (kpmsm/µm)e−λ τ1 = 0, i.e.
D1(iω ,τ1) = 0. Setting a = kpg, b = −kpmsm/µm and
τ = τ1, we note that this equation writes as
λ − a− be−λ τ = 0, which is Eq. (5). According to the
analysis performed in the previous section, the following
result holds.
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Proposition 1.Letτ1 > 0, τ2 = 0 and kpg< kpmsm/µm. The
steady state(P,N∗) = (0,0) of system(9)-(10) is locally
asymptotically stable forτ1 < τ1

0 and unstable forτ1 > τ1
0 ,

where

τ1
0 =

1
ω0

tan−1
(

ω0

kpg

)

and ω0 =

√

(

kpmsm

µm

)2

− k2
pg.

If τ1 = τ1
0 then the system(9)-(10) undergoes a Hopf

bifurcation at(P,N∗) = (0,0).

3.1.2 Caseτ1 = 0 andτ2 > 0

In this case, Eq. (11) is
D(λ ,0,τ2) ≡ D1(λ ,0) ·D2(λ ,τ2) = 0. If λ = iω (ω > 0)
is a root ofD(λ ,0,τ2) = 0, then, beingD1(iω ,0) 6= 0, we
conclude that λ = iω is a solution of
D2(λ ,τ2) ≡ λ + µn − (snrknn/µnr)e−λ τ2 = 0, i.e.
D2(iω ,τ2) = 0. Again, we can use Eq. (5) but with
a = −µn, b = snrknn/µnr and τ = τ2. Contrary to the
previous case, we find that the condition|b| > |a| is not
satisfied. The fact there is not purely imaginary root
satisfyingD(iω ,0,τ2) = 0 leads to the following result.

Proposition 2.Let τ1 = 0, τ2 > 0. Then the steady state
(P,N∗) = (0,0) of system (9)-(10) is locally
asymptotically stable.

3.1.3 Caseτ1 > 0 andτ2 fixed in its stable interval

We now consider Eq. (11) with τ2 in its interval of
stability, regardingτ1 as a parameter. Letλ = iω (ω > 0)
be a root of (11). Then,D1(iω ,τ1) ·D2(iω ,τ2) = 0. From
the previous subsection, one has thatD2(iω ,τ2) 6= 0, so
that we must have D1(iω ,τ1) = 0. It is now
straighforward that previous arguments imply the
following result.

Proposition 3.Letτ1 > 0, τ2 > 0 and kpg< kpmsm/µm. The
steady state(P,N∗) = (0,0) of system(9)-(10) is locally
asymptotically stable forτ1 < τ1

0 and unstable forτ1 > τ1
0 ,

where

τ1
0 =

1
ω0

tan−1
(

ω0

kpg

)

and ω0 =

√

(

kpmsm

µm

)2

− k2
pg.

If τ1 = τ1
0 then system(9)-(10) undergoes a Hopf

bifurcation at(P,N∗) = (0,0).

3.1.4 Caseτ1 fixed in its stable interval andτ2 > 0

This case states thatτ1 is in its stable interval[0,τ1
0) and

τ2 is regarded as a parameter. Assume that Eq. (11) has
purely imaginary solution of the formλ = iω (ω > 0).
Then it can be seen thatD1(iω ,τ1) 6= 0 sinceτ1 ∈ [0,τ1

0)
andD2(iω ,τ2) 6= 0. Consequently, we have the following
result.

Proposition 4.Let τ1 ∈ [0,τ1
0), τ2 > 0 and

kpg < kpmsm/µm. Then the steady state(P,N∗) = (0,0) of
system (9)-(10) is locally asymptotically stable for
τ2 > 0.

3.1.5 Caseτ1 = τ2 = τ

Eq. (11) becomesD(λ ,τ)≡ D1(λ ,τ) ·D2(λ ,τ) = 0. Once
again, if λ = iω (ω > 0) is such thatD(iω ,τ) = 0, we
have thatD1(iω ,τ) = 0. Applying the analysis of previous
subsections, we obtain conditions under which a family of
periodic solutions bifurcate from the trivial equilibrium.

Proposition 5.Let kpg < kpmsm/µm. There existsτ0 > 0
given by

τ0 =
1

ω0
tan−1

(

ω0

kpg

)

and ω0 =

√

(

kpmsm

µm

)2

− k2
pg.

such that the steady state(P,N∗) = (0,0) of system
(9)-(10) is locally asymptotically stable forτ < τ0 and
unstable for τ > τ0. Moreover, for τ = τ0, the Hopf
bifurcation occurs at(P,N∗) = (0,0).

3.2 Numerical investigations

This section is devoted to further investigations on the
model (9)-(10). Specifically by employing numerical
solutions we perform the stability analysis and we
investigate on the existence of Hopf bifurcation in the
other fixed point(P,N∗) of the model (9)-(10) where
analytical results have not been reported. Accordingly we
perform a sensitivity analysis on the time delaysτ1 and
τ2.

The stability analysis is performed by considering a
specific model and in order to compare our model with
the model proposed in [37], we set the parameters of the
delayed model (9)-(10) as follows:

p∞ = 20×106,kpm= 0.6,sm = 0.005,

µm = 0.002,kmp= 0.01,kpg= 2.95,

snr = 0.08,knn= 0.01,knp= 0.1,

µnr = 0.12,knn= 0.01,knp= 0.1,µn = 0.05.

The first step is to compute the fixed points. As known,
the steady states are points where the nullclines intersect.
As Figure1 shows we have two different steady states: the
fixed pointE0 = (0,0) whose stability analysis has been
performed in the previous section and the fixed pointE1 =
(5×105,1.6). In what follows the numerical investigations
focus on the stability analysis of the fixed pointE1.

The first set of simulations refers to the caseτ1 = τ2 =
τ. Lettingτ varied, we have found that a Hopf bifurcation
occurs at̄τ = 0.83358. Indeed as Figure2 shows, ifτ < τ̄
the fixed pointE1 is asymptotically stable and ifτ > τ̄ the
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fixed pointE1 is unstable (the numerical solutions has been
obtained for a set of initial conditions near the fixed point
E1). It is worth stressing that in the previous section we
have proved analytically that the fixed pointE0 undergoes
a Hopf bifurcation.

This set of simulations is susceptible of biological
interpretation. Indeed in the equations ofP andN∗ at time
t we have introduced also the role of these cells at time
t − τ in order to take into account different stage of
activation. Differently from [37], our results show how it
is important during the interactions to take care of the
time at which the cells are activated. According to Figure
2, if at time t we have also cells whose activation stage is
that at timet − τ, with τ < τ̄, the system will reach the
septic death; if at timet we consider cells whose
activation stage is that at timet − τ, with τ > τ̄, the
system can reach the health stage (remember that in this
case also the steady stateE0 undergoes a Hopf
bifurcation).

The second set of numerical investigations refers to
the caseτ1 = 0 andτ2 ≥ 0. As Figure3 shows, for a set of
initial conditions near the fixed pointE1, whenτ2 < τ̄ the
fixed pointE1 is always locally asymptotically stable; for
τ2 > τ̄ the fixed pointE1 is unstable (in particular the
origin is always asymptotically stable as already proved
in the previous section). This set of results shows again
how the time delay influences the asymptotic behavior of
the system: health state or septic death. In the third case,
namely whenτ1 ≥ 0 andτ2 = 0, our numerical results
show that the fixed pointE1 is always asymptotically
stable.

The last set of numerical simulations refers to the
sensitivity analysis with respect the parameterkpg and in
the caseτ1 = τ2 = τ. In the caseτ = 0.4, the Figure4
shows that forkpg = 2.7 the system reaches the steady
stateE0 and forkpg = 2.95 the system reaches the steady
stateE1.

Fig. 1: In the left panel the nullclines of the pathogen (purple
line) and of the activated phagocytes (black line). Zoomingof
the regions where there are the steady states:E1 = (5×105,1.6)
(center panel) andE0 = (0,0) (right panel).

Fig. 2: Numerical solutions of the delayed model (9)-(10) in the
caseτ1 = τ2 = τ and with initial conditions near the steady state
E1 = (5×105,1.6). The first column (a), (b) and (c) shows the
time evolution ofP (blue line), the second column (b), (e) and
(h) shows the time evolution ofN∗ (green line), the third column
(c), (f) and (i) shows the associated phase space diagram of the
delayedN∗/P system (red line).

Fig. 3: Numerical solutions of the delayed model (9)-(10) in the
caseτ1 = 0 andτ2 > 0, and with initial conditions near the steady
stateE1 = (50×106,1.6). The first column (a) and (d) shows the
time evolution ofP (blue line), the second column (b) and (e)
shows the time evolution ofN∗ (green line), the third column (c)
and (f) shows the associated phase space diagram of the delayed
N∗/P system (red line).
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Fig. 4: Phase space diagram of the delayed model (9)-(10) in the
caseτ1 = τ2 = τ = 0.4. For kpg = 2.7 the system reaches the
steady stateE0 (left panel) and forkpg = 2.95 the system reaches
the steady stateE1 (right panel). The pathogen nullclines are in
purple line and the activated phagocytes nullclines are in black
line.

4 Conclusions and future perspective

The present paper has been devoted to generalize the
mathematical model developed in [37] by inserting two
time delays in order to take into account cells with
different stage of activation. The asymptotic analysis has
been concerned with the stability analysis of the steady
states and the sufficient conditions under which a Hopf
bifurcation occurs. The analysis has shown how time
delays can influence the whole dynamics and in particular
the stability of the steady state.

In particular the numerical results and the bifurcation
analysis suggest that the magnitude of the time delay plays
several important roles in the restoration of health.

It is worth stressing that the biological relevance of
the analysis performed in the present paper and the related
conclusions are limited by the simplifications present in
the proposed delayed model. Therefore the development
of a much larger model that is also able to reproduce
experimental data is object of future investigations.

Research directions include the derivation of an
explicit algorithm for determining the direction of the
Hopf bifurcation and the stability of the bifurcating
periodic solutions. This step can be pursued by employing
the center manifold theory and the normal form method
[38]. Further research directions include generalizations
of the delayed model proposed in the present paper, which
takes into account tissue damage and anti-inflammatory
mediators such as cortisol and interleukin-10. Moreover
the introduction of the adaptive branch of the immune
system is object of further investigations.

Finally the derivation of a mathematical model for the
acute inflammatory response to infection based on the
thermostatted kinetic theory [39,40] is part of future
research perspective.
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