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Abstract: This paper deals with further developments on a mathenhatiodel recently proposed for the modeling of the acute
inflammatory response to infection or trauma. In particilasrder to take into account that some interactions havenanmediate
effect, we introduce time delays. Specifically the papeisiedth the existence of steady states, determining thenpater regimes
where the equilibrium points are stable, and the onset of Hibprcation appears. Numerical simulations are perfaiwéh the main
aim of supporting the analytical results and investigatéhfer dynamics.
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1 Introduction healing must be activated, i.e. undergo phenotypic
alterations of cellular, biochemical, and functional
The problem of abnormal organ repair has gained muckproperties.
attention considering that there is a significant shortdge o During the inflamation phase, the immune system
organs available for transplantation. In this context theperforms a fundamental action, s&24,5]. The response
normal repair process, i.e. wound healing processpfthe immune system to an infectious agent is subdivided
assumes an important role. Wound healing is an complexnto two main categories: Innate (non-specific) immunity
process by which the skin or organ repairs itself afterresponse, which is mediated by granulocytes,
injury [1,2]. Specifically wound healing comprises three macrophages, and NK cells6][ Adaptive (specific,
sequential, overlapping, phases: the inflammation phasecquired) immune response, which is mediated by the
(hemostasis and the actual inflammation), thelymphocytes 7]. The innate immune system is
proliferation phase, and the maturation (remodeling)constitutively active and reacts immediately to infection
phase. Hemostasis occurs immediately after tissue injuryrhe adaptive immune response to an invading organism
and can be compared with the acute phase reaction of thigkes some time to develop.
innate immune system during infection. The first cells to  Different mathematical models have been proposed
appear in the wound area are neutrophils which start witifor the modeling of immune system respons®9l.
the critical task of phagocytosis in order to destroy andSpecifically mathematical models based on ordinary
remove bacteria, foreign particles and damaged tissudifferential equations10,11,12,13], partial differential
Phagocytotic activity is crucial for the subsequentequations 14,15, kinetic theory approachlp,17] and
processes, because acute wounds that have a bacter@ntinuum mechanics approaci8[. In the pertinent
imbalance will not heal. The macrophage becomes thditerature computational models have been also proposed,
predominant inflammatory cell type in clean noninfectedsee 9] and the review pape2[]. However the previous
wounds. Every phase of the healing process consists afited models are based on instantaneous interactions thus
complex interactions between cells and mediators whichavoiding to take into account that various phenomena
tend to regulate the process. Cells participating in woundoccur with some delay. In order to overcome this issue,
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delayed models have been proposed in populatiorMoreover we introduce a time delay > 0 into the
dynamics P1,22], in immunology R324], for tumor  equation ofP as follows:
formation [25,26,27], for economic systems2B,29,30,

31] and specifically in the study of the Solow modaR]| M = sm— UmM — kmpMP
33, of the Dalgaard-Strulik modeBH], of the credi risk
contagion 85, and in the asset of price3¢]. The p_ —KprMP;

introduction of time delay allows to enrich the description
of the dynamics of a system in particular by changing the\yherep, = P(t — 7). Bearing B7] in mind thus we have
stability of the steady state and triggering onset of Hopf
bifurcation. . =] KpmSmPr
This paper is concerned with further investigations on P = kpgP (1_ p_> - ma
a mathematical model recently proposed &7][for the ” " P

modeling of the acute inflammatory response to infectionyhere kpg is the pathogen growth rate am, is the
or trauma. In particular in order to take into account thatcarrying capacity of the pathogen population.

some interactions have not an immediate effect, wein what follows, the above parameters will be assumed
introduce time delays. Specifically the paper deals withnonnegative.

the existence of steady states, determining the parameter

regimes where the fixed points are stable, and the onset of

Hopf bifurcation appears. As known a steady state i :

belongs to the nuliclines of the system and it is stable if2'1 Steady states and stability analysis
the real part of each eigenvalue associated with th
linearized system at that fixed point is negative. A

bifurcation occurs when a change in a parameter alters th , \ e :
g b that the fixed points of Eq.1lj coincide with those for

number of fixed points and/or their stability. ; . . :
The contents of the present paper are organized a§1: 0. In particularP, = 0 is always a fixed point of Eq.

follows. After this introduction, Section 2 is devoted to ). 'Lhe.other f').(Ed_ pointB, are solution of the following
the mathematical analysis (existence of steady states arf9€Praic equation:

1)

The steady states of Eql)(are such that the time
erivative P vanishes identically. It is immediate to see

Hopf bifurcation) of the delayed pathogen equation, = KonSi
which shares various properties with the delayed model Kpg (1_ _*> M,
proposed in Section 3 which consists of a system of two Peo Him + KmpP

delayed differential equations where the independent
variables represent the levels of pathogen and the"
activated phagocytes (e.g. neutrophils); the model ig buil
up from consideration of direct interactions of
fundamental effectors and does not include components
of the adaptive immune response, i.e. T-cells and specific _
antibodies? Numerical simﬁlations are also perfoprmed Pex (KpmSm — Kpgtim) = 0. 2)
within the Section 3 with the main aim of supporting the The discriminant of Eq.3) reads

analytical results and investigating further nonlinear

dynamics. Finally Section 4 is concerned with concluding A — Kpg | Kpg (Hm+ kmppoo)z — 4kmpkpmS'npoo:| )
remarks and further research perspectives.

amely if

KpgkmpPZ + Kpg (Hm — KmpPe) P+

then Eq. 1) also admits the fixed point
2 The delayed pathogen equation P. = (kmpPeo — pm) / 2Kmp

It is known that when an individual undergoes an injury, : B 5

at the wound there exists a sentinel level of immune Kpg = 4KmpKpmSmPeo / (Peokmp+ Hm)®,
system cells (local immune resporigg able to respond and the fixed poinP, = p; andP, = p,, p1 < P2, with
and remove local infections (pathogePs According to

[37] we assume that: b _ Kpg (KmpPe — Hm) £ VA
e M is inhibited at the rat&m when it interacts wittP at : 2KpgKmp
timet;
i 2

o Pis inhibited at the raté,y, when it interacts wittM at ~ If Kpg > 4KmpKpmSmPPeo / (Peokimp + Hm)* .
timet: In [37] Reynolds et al. have shown that= 0 is stable for

_ Kpg < KpmSm/ Hm, andP, = p; is stable whenever it exists.
* sm models a source dif; Henceforth, in what follows we will deal only with these
e Lim models the death d¥l. two stable fixed points.
(© 2015 NSP
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Bearing all above in mind, the linearized equation of 2.2 On the Hopf bifurcation

Eqg. (1) around one of these two stable fixed poiRtss

P=a(P—P.)+b(P—P.), (4)
where ifP, = 0 we have
a=kpg and b= _ Kpmm
Hm
and if P, = ka(h‘ﬂppw - um)+ \/Z
2Kpgkmp
2
a=Kkpg|1— &4_ (1_ E) M
Peo Peo KpmSm
Peo
The associated characteristic equationdpiréads
A—a—be?T=0. (5)

It is well known that the fixed poinP, of Eq. (1) is
locally asymptotically stable if each of the characteisti
roots of Eq. ) has negative real parts. Hence, the
marginal stability is determined by the equatiohs= 0
andA =iw, w > 0. Itis clear that the cask = 0 cannot
occur because+b < 0. Let A = iw be a root of the
characteristic equatiorb( with w > 0. Substituting it into
(5) and separating the real and imaginary parts yields

(6)

Squaring each equation in6)( taking the sum and
employing sif wt 4 cog wt = 1, we have

a= —bcoswr, = —bsinwr.

w? =b?— &

(7)

Itis easy to see that Egr)has one positive solution

Wy = 1 /b2_ a2
if |b| > |a]. From @), one can obtain the valueg
corresponding tew as follows:

%tan*1 (%), if a> 0,

To =
1 .
—tan?! (@) +2m,if a<O.
Wy a

One can also see that the purely imaginary riaat is

simple. If we suppose by contradictidn= i« to be a
repeated root off), then differentiating §) with respect
to A, insertingA = iayp, and using %), leads towy = O,

which gives a contradiction.

The conditions under which a Hopf bifurcation occurs at
T are verified except for the transversality condition. Let
A (1) be the root of §) neart = 19 such that ReA (1p)) =0
and Im(A (10)) = wy. Differentiating both sides of Eq5)
with respect tar, we have

S U S 4
dr A (A—a) A’
Thus, we obtain
-1
s|gn d(Re)\) . — Slgn Re(@) et
dr |58, dr / 528,
. 1

Since the sign of§) is positive, whem = iwy, the
only crossing of the imaginary axis is from left to right as
T increases. Consequently, the stability of the steady state
P. can only be lost and not regained.

Bearing all the above analysis in mind, we can state the
main result of this section.

Theorem 1.LetA be defined by Eq3).

DIf kpg < KpmSm/ Um, then the steady state P- 0 of Eq.
(1) is locally asymptotically stable for < 19 and

unstable forr > 19, where
o Komsm ) °
o) o) 4
Kog Lm Pg

Furthermore, Eq(1) undergoes a Hopf bifurcation at

To= —tan
o

P. = 0whent = 10.
2)1f Kpg > kmKomSmPeo/ (Peokimp - Him)? @nd
2
P 1_2P*+<1_E> KmppgP: |
Poo oo Po/  KpmSm

the steady state

P. = P2 = [Kpg (KmpPe — tim) + VA | /2kogkmp

of Eqg. (1) is locally asymptotically stable for < 19
and unstable for > 13, where

1 tan 1 1o, if a >0,
o
To =
1 - .
—tanfp+2m ifa <O,
o
and
- o
o= 2P, P\ 2 KnkogPs |
Kpg |1— *_|_<1__*> ﬂ
Peo Peo KpmSm
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state (septic death state); this state will be analyzedan th

_1 2P* 1 P kmpkng* next subsection by performing numerical simulations.
a=1- -  Pe KpmSm Linearization of system9j-(10) in the neighborhood
of the trivial steady state produces the system
P\ 2
— _ ) g2 . K
wp = Kpg (1 o ) az. P = kpgP — ;;TSm Pr,,

Furthermore, Eq(1) undergoes a Hopf bifurcation at

P* = P2 whent = 10 N* _ _unN* Snrknpprz Snrknn N*
nr
3 The delayed model with theimmune So the associated characteristic equation is given by
stem r onse k
¥ &P Kpg— A — P eany 0
. . . Hm
In this section we couple the pathogen equation analyzed =0,
in the previous section with the role of phagocytic Sarknp Surknn
. . —AT2 )\ 4+ — —/\ T2
immune system cells (neutrophils and macrophages). . .

Bearing paper 37] in mind, we modify the model
proposed in 37] by introducing two time delays; > 0 namely
andt, > 0 as follows:

D(A,11,72) =D1(A,11)-D2(A,12) =0,  (11)

- P KpmSmPr, y
P = KkpgP <1 — E) — 7Um+ KngP —KpnN™P, 9) where
k
1% Snr (knanjfz + kinTZ) U N* (10) Dl()\ ) Tl) A— kpg+ pmsn 7)\ Tl
= - ) m
Mnr + (knnN* + kin) ¥ Snrkn
Do(A,T2) = A + i — NN a-AT

where P and N* represent the levels of pathogen and Hnr

activated phagocytes, respectively and It is known from [7] that, whent; — T, — 0, the

* kpn is the rate at whiclN* consumeP; corresponding eigenvalues dfl) are real and given by
e S is the source of resting phagocytes; A = (Kpgtm — KpmSm) / Um @andA = (Shrknn — unum) / Unr. .

Sarknn < UnMnr holds true. Consequently, in absence of
delays, the steady stat®,0) of system 9)-(10) is locally
asymptotically stable iRpg < KpmSm/ tm.

e knn is the activation of resting phagocytes by previously
activated phagocytes and their cytokines;

e [y is the decay rate of activated phagocytes; Letting the time delays; and 1, varied, the trivial
e knp is the activation rate of resting phagocytes by pafixed point of systemq)-(10) may lose its stability. In
thogen. order to consider the effects of the time delay, we need to

investigate the boundary of the stability region
It is worth stressing that with respect pap@7]| the above ~ determined by the equations= 0 andA =iw (w > 0).
model is derived by considering the delayed equativas ~ Letting )\d:r? It? 1D, OEe has thgmﬂroﬁ 71, T2) Té Or?aving
~konMPy, andN* = (k" + knpP),, Ne — ", where assumed thakpgtm — Komsm < 0. Thus, only the case

; . k A =iw (w > 0) needs to be analyzed.
NR is the population of the resting phagocytes.

3.1.1 Casa; >0andrp =0
3.1 Steady states and stability analysis

Eq. 1) becomedD(A,11,0) = D1(A,11) - D2(A,0) = 0.
The steady states of systerfl){(10) are obtained by LetA =iw (w > 0) be a root ofD(A,11,0) = 0. Since

settingP = N* =0, P, =P andN;, = N* for all t. ~ D2(iw0) # 0, A = iw has to sole
Therefore, when there is no time delay, ite= 1, =0, D1(_/\,T1) = A - k,?g + (KpmSm/Hm)e*™ = 0, ie.
we recover the model considered in Sectiop @f paper Di(iw,71) = 0. Setting a = Kpg, b = —KpmSm/Um and

[37], and in particular there exists the fixed point T = 71, we note that this equation writes as
(P,N*) = (0,0) (health steady state). It is important to A —a—be T = 0, which is Eq. 6). According to the
note that the delayed model admits also a steady statanalysis performed in the previous section, the following
(P,N*) # (0,0) which represents the inflammation steady result holds.
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Proposition 1.Letty > 0, T2 =0and kyg < KpmSm/tm. The
steady stat€P,N*) = (0,0) of system(9)-(10) is locally
asymptotically stable for; < 73 and unstable for; > ¢,
where

1 _ (00} k msm>2

1 1 p

g =—tan | — and wy= ) —k2.
" w (kpg> < Hm po

If 11 = 1} then the systent9)-(10) undergoes a Hopf
bifurcation at(P,N*) = (0,0).

3.1.2 Casg; =0andr, >0

In this case, Eq. 1) is
D(/\,O,Tz) = Dl(/\,O) : Dz(/\,'['z) =0.IfA=iw ((A) > 0)
is aroot ofD(A,0,12) = 0, then, beingD1(iw,0) # 0, we
conclude that A = iw is a solution of
D2(A,T2) = A + Hn — (Swknn/pnr)€2 = 0, ie.
Do(iw,172) = 0. Again, we can use Eq.5] but with
a= —Un, b= syknn/tn and 7 = 12. Contrary to the
previous case, we find that the conditifinp > |a| is not

satisfied. The fact there is not purely imaginary root

satisfyingD(iw, 0, 7o) = 0 leads to the following result.

Proposition 2.Let 11 = 0, T, > 0. Then the steady state

(RN*) = (0,0) of locally

asymptotically stable.

system (9)-(10) is

3.1.3 Casa; > 0 andrt; fixed in its stable interval

We now consider Eq.1() with 1, in its interval of
stability, regarding; as a parameter. Lét=iw (w > 0)
be a root of 11). Then,D1(iw, 11) - D2(iw, 72) = 0. From
the previous subsection, one has tBafiw, 12) # 0, so
that we must haveDi(iw,77) = 0. It is now
straighforward that previous arguments
following result.

Proposition 3.Lett; > 0, T2 > 0 and kyg < KpmSm/ m- The
steady staté€P,N*) = (0,0) of system(9)-(10) is locally
asymptotically stable for; < 73 and unstable for; > 13,
where

1 _ (093] <pmS )2
1 1 P
° (o ( ;pg> < I‘l Po

If 11 = 13 then system(9)-(10) undergoes a Hopf
bifurcation at(P,N*) = (0,0).

3.1.4 Casa; fixed in its stable interval anth > 0

This case states thaf is in its stable interval0, 7}) and
T, is regarded as a parameter. Assume that Ef). ljas
purely imaginary solution of the form = iw (w > 0).
Then it can be seen that (iw, 11) # 0 sincety € [0, 1y)

andD;(iw, 12) # 0. Consequently, we have the following

result.

imply the

Proposition4let © € [0,1}), 1 > 0 and
Kpg < KpmSm/m. Then the steady stat® N*) = (0,0) of
system (9)-(10) is locally asymptotically stable for
o > 0.

3.15Casa1=1r=T1

Eqg. (11) become® (A, 1) =D1(A,1)-D2(A, 1) =0. Once
again, ifA =iw (w > 0) is such thaD(iw, ) = 0, we
have thaD (iw, T) = 0. Applying the analysis of previous
subsections, we obtain conditions under which a family of
periodic solutions bifurcate from the trivial equilibrium

Proposition 5.Let Kyg < KpmSm/Hm. There existsrg > 0
given by

v (i) (fote)
To=—tan | — and = /) —K2.
0 o Kpg w Hm P9

such that the steady staté®N*) = (0,0) of system
(9)-(10) is locally asymptotically stable for < 15 and
unstable fort > 1. Moreover, fort = 19, the Hopf
bifurcation occurs atP,N*) = (0,0).

3.2 Numerical investigations

This section is devoted to further investigations on the
model ©)-(10). Specifically by employing numerical
solutions we perform the stability analysis and we
investigate on the existence of Hopf bifurcation in the
other fixed point(P,N*) of the model 9)-(10) where
analytical results have not been reported. Accordingly we
perform a sensitivity analysis on the time delaysand

T2.

The stability analysis is performed by considering a
specific model and in order to compare our model with
the model proposed B[], we set the parameters of the
delayed model9)-(10) as follows:

Peo = 20 % 10° kpm = 0.6, 5y = 0.005,

Hm = 0.002 kmp= 0.01, kpg = 2.95,

Shr = 0.08 knn = 0.01, knp = 0.1,

pnr = 0.12, knn = 0.01, knp = 0.1, tin = 0.05.

The first step is to compute the fixed points. As known,
the steady states are points where the nuliclines intersect
As Figurel shows we have two different steady states: the
fixed pointEy = (0,0) whose stability analysis has been
performed in the previous section and the fixed p&int
(5x 10°,1.6). In what follows the numerical investigations
focus on the stability analysis of the fixed polfit

The first set of simulations refers to the cagse- 7, =
7. Letting T varied, we have found that a Hopf bifurcation
occurs atr = 0.83358. Indeed as Figuieshows, ift < T
the fixed pointE; is asymptotically stable and if > 7 the

(@© 2015 NSP
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fixed pointE; is unstable (the numerical solutions has be 1<%
obtained for a set of initial conditions near the fixed poi
Ej). It is worth stressing that in the previous section \ .
have proved analytically that the fixed polf undergoes
a Hopf bifurcation.

This set of simulations is susceptible of biologic
interpretation. Indeed in the equationsFoandN* at time
t we have introduced also the role of these cells at ti

1600 1604

440000 480000

1506

— T T T
00 Spoo

(e) (®

—
[
—~

t — 17 in order to take into account different stage

activation. Differently from 87], our results show how it
is important during the interactions to take care of t
time at which the cells are activated. According to Figt
2, if at timet we have also cells whose activation stage
that at timet — 7, with T < 1, the system will reach the

o

440000 4BO000

1808 1.00 1 BD4

W
il |

L

T
2000

L

=

#mo

septic death; if at timet we consider cells whose o7 (0
activation stage is that at time— 1, with 7 > 1, the ] z
system can reach the health stage (remember that in _ § . g
case also the steady statey undergoes a Hopt ¢ 2 E
bifurcation). §1 : g4 1 Bl
T 1000 3000 5000 0 1000 000 5000 200000 B000CD 1400000

The second set of numerical investigations refers
the casa; = 0 andt, > 0. As Figure3 shows, for a set of
initial conditions near the fixed poiifi;, whent, < T the
fixed pointE; is always locally asymptotically stable; fo

T, > T the fixed pointE; is unstable (in particular the
origin is always asymptotically stable as already prove
in the previous section). This set of results shows agai
how the time delay influences the asymptotic behavior o
the system: health state or septic death. In the third cas
namely whent; > 0 and 1, = 0, our numerical results

!

Fig. 2: Numerical solutions of the delayed mod8)-(10) in the

[ caser =T;=T1 and with initial conditions near the steady state
E; = (5x 10°,1.6). The first column (a), (b) and (c) shows the

dtime evolution ofP (blue line), the second column (b), (e) and

h) shows the time evolution ™* (green line), the third column

c), (f) and (i) shows the associated phase space diagraheof t

Sma

delayedN* /P system (red line).

e,

o

show that the fixed poinE; is always asymptotically

— P N-..:
stable. T (@) g (2 :
The last set of numerical simulations refers to t &+ e[l g
sensitivity analysis with respect the paraméq@'and in £ | ; ”\ HH M”"Hﬂ"ﬁ”mﬂ-n ;
the caser; = 12 = 1. In the caser = 0.4, the Figured = * =37 M ||,J|M"ﬁwm o=
shows that forkpg = 2.7 the system reaches the stea - 1 M i :
stateEg and forkpg = 2.95 the system reaches the stea . . ‘ ' .
statek;. S e we me bme we e der | e
>t (@) (@ e
8 | g: a "““""“l’f‘ a —

i % " o §: z 2 =
Y 7 2 %- -\ 8 g: 37 3

g: —T T T T T T T S Fig. 3: Numerical solutions of the delayed mod8)-(10) in the

Oe+00 2e+05 de+05 6e+05 460000 500000 540000 00 05 10 15 20

caser; = 0 andt, > 0, and with initial conditions near the steady
stateE; = (50x 1P, 1.6). The first column (a) and (d) shows the
time evolution ofP (blue line), the second column (b) and (e)
Fig. 1: In the left panel the nullclines of the pathogen (purple shows the time evolution dfi* (green line), the third column (c)
line) and of the activated phagocytes (black line). Zoomifig ~and (f) shows the associated phase space diagram of theedelay
the regions where there are the steady statgs: (5 x 10°, 1.6) N*/P system (red line).

(center panel) aniy = (0,0) (right panel).

3 3 P
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ky=2.7, =04 kpy=2.95, =04

© N h

0 50 100 150 200 0 7000000 2000000 3000000

B p

Fig. 4: Phase space diagram of the delayed ma@e(10) in the
caser; = To = T = 0.4. Forkpg = 2.7 the system reaches the
steady stat& (left panel) and fokpg = 2.95 the system reaches
the steady statE; (right panel). The pathogen nullclines are in
purple line and the activated phagocytes nullclines ardankb
line.

4 Conclusions and future per spective
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