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Abstract: Kähler graphs are compound graphs which consist of principal and auxiliary graphs. We show some natural commutative
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1 Introduction

A graphG = (V,E) consists of a setV of vertices and a
set E of edges. Regarding graphs as 1-dimensional
CW-complexes geometers consider them to be discrete
models of Riemannian manifolds. Paths, which are chains
of edges, on a graph correspond to geodesics on a
Riemannian manifold. Being inspired by papers [6] and
[8], the second author began to study Kähler manifolds
from the Riemannian geometric point of view by make
use of Kähler magnetic fields ([1,3] and their references).
Also, he introduced in [2] the notion of Kähler graphs as
discrete models of Riemannian manifolds admitting
magnetic fields. A Kähler graph is a graph whose set of
edges is divided into two disjoint subsets. We may say
that a Kähler graph is a compound of two graphs. One is
called the principal graph and the other the auxiliary
graph. Geometrically, paths on the principal graph of a
Kähler graph are regarded as geodesics, which are
motions of charged particles without getting the influence
of magnetic fields. In order to show the influence of
magnetic fields, we use the auxiliary graph. We regard a
p-step path in the principal graph followed by aq-step
path in the auxiliary graph as a motion of a charged
particle under the influence of a magnetic field of strength
of Lorentz forceq/p.

When we introduce new notions, it is needless to say
that the most important thing is to construct many good
examples. In [9] and [10], we gave examples of Kähler
graphs; Cayley Kähler graphs, Kähler graphs obtained by
the complement-filling operation, those obtained by

product operations and so on. From the geometrical point
of view, the simplest example of a Kähler manifold
should be a complex lineC, which can be regarded as a
plane R

2 from the viewpoint of real Riemannian
geometry. Thus we are interested in giving a model of a
complex line whose principal graph is a model of a real
plane. In this paper, keeping above in our mind we add
five kinds of product operations. Being different from
operations we gave in [10] these operations are
commutative, and give Kähler graphs whose principal
graphs are connected as 1-dimensional CW-complexes.
As we obtain new Kähler graphs we study eigenvalues of
their Laplacians to show their properties.

This subject was presented by the authors at
International Conference on Recent Advances in Pure and
Applied Mathematics (ICRAPAM-2014) which was held
at Antalya, Turkey. The authors are grateful to the
members of the organizing committee of ICRAPAM-
2014, especially to Professor Dr. Ekrem Savas, for their
hospitality during their stay at Antalya.

2 Kähler graphs

A graphG = (V,E) is a pair of a setV of vertices and a
setE of edges. In this paper we suppose that each edge
does not have its orientation. Also, we suppose that
graphs do not have loops and multiple edges. Here, a loop
is an edge joining a vertex and itself, and multiple edges
are edges joining the same pair of vertices. We say two
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verticesv,v′ ∈V to be adjacent to each other if there is an
edge joining them. In this case we denote asv∼ v′.

We say a graphG= (V,E) to beKähler if the setE is
divided into two subsets asE = E(p) ∪ E(a)

(E(p)∩E(a) = /0) and if it satisfies that both theprincipal
graph G(p) = (V,E(p)) and the auxiliary graph G(a)

= (V,E(a)) do not have hairs. That is, for an arbitrary
vertex v ∈ V there exist at least two edges inE(p)

emanating fromv and exist at least two edges inE(a)

emanating fromv. We call an edge belonging toE(p)

principal and call that belonging toE(a) auxiliary. Given
two verticesv,v′, we denote asv∼p v′ if they are adjacent
to each other inG(p), and denote asv ∼a v′ if they are
adjacent to each other inG(a). The reason why we
consider such compound graphs is that we intend to give
a discrete model of a manifold with complex structure.
Since graphs are 1-dimensional objects, it is not so easy
to introduce an object of real 2-dimension. We therefore
use such compound graphs.

The simplest example of a Kähler manifold is a
complex Euclidean space. We are hence interested in
considering its discrete model.

Example 1.We take a set of latticeV = {z= x+
√
−1y ∈

C | x,y∈ Z}, whereZ denotes the set of integers. For two
verticesz= x+

√
−1y, z′ = x′+

√
−1y′ ∈V we definez∼p

z′ if and only if z′−z=±1 holds, and definez∼a z′ if and
only if z′− z= ±

√
−1 holds. With these adjacency rules

we get a Kähler graph. We shall call this a Kähler graph of
complex lattice.

We see that a Kähler graph of complex lattice consists
of horizontal lines for the principal graph and vertical
lines for the auxiliary graph. In other words, it is a
“product” of a principal graph of real lattice and an
auxiliary graph of real lattice. It is known that we have
four typical ways of product operations of graphs;
Cartesian product, strong product, semi-tensor product
and lexicographic product. Viewing a Kähler graph of
complex lattice we defined four kinds of Kähler graphs of
product type in [10] in the following manner. Let
G= (V,E), H = (W,F) be two graphs. We define Kähler
graphs of Cartesian product typeG�̂H, of strong product
type G⊠̂H, of semi-tensor product typeG⊗̂H and of
lexicographic product typeG⊲H as follows.

i)Their sets of versices are the productV ×W:
ii)For two vertices(v,w),(v′,w′) ∈ V ×W, we define
(v,w)∼p (v′,w′) if and only if v∼ v′ in G andw= w′:

iii)For two vertices (v,w),(v′,w′) ∈ V ×W, we define
(v,w) ∼a (v′,w′) if and only if they satisfy the
following conditions:

a)v= v′ andw∼ w′ in H for G�̂H,
b)eitherv = v′ andw∼ w′ in H, or v ∼ v′ in G and

w∼ w′ in H for G⊠̂H,
c)v∼ v′ in G andw∼ w′ in H for G⊗̂H,
d)w∼ w′ in H for G⊲H.

These Kähler graphs have common principal graphs, and
they are not connected as 1-dimensional CW-complexes.
Moreover, these product operations are not commutative,
that isG�̂H 6= H�̂G, for example.

From physical point of view, we may say that a
Kähler graph of complex lattice shows motions of
charged particles which move to the horizontal direction.
On a graph G = (V,E), a chain γ = (v0, . . . ,vn)
∈V × ·· ·×V of n-edges (i.e.vi−1 ∼ vi for i = 1, . . . ,n) is
said to be ann-step path. We say a pathγ contains a
backtracking if there is i0 (1 ≤ i0 ≤ n− 1) with
vi0−1 = vi0+1. Paths without backtrackings are considered
to correspond to geodesics on a Riemannian manifold.
Coming back to a Kähler graphG = (V,E(p) ∪E(a)), we
take a pair(p,q) of relatively prime positive integers. A
(p+q)-step pathγ = (v0, . . . ,vp+q) without backtrackings
on G is said to be a(p,q)-primitive bicolored pathif it
satisfiesvi−1 ∼p vi for i = 1, . . . , p and vi−1 ∼a vi for
i = p + 1, . . . , p + q. An m(p + q)-step path γ =
(v0, . . . ,vm(p+q)) without backtrackings is said to be a
(p,q)-bicolored path if each (p + q)-step subpath
γ j = (v( j−1)(p+q), . . . ,v j(p+q)), j = 1, . . . ,m, is a
(p,q)-primitive bicolored path. As we mentioned in§1,
we consider (p,q)-bicolored paths show motions of
charged particles under a magnetic field of strengthq/p.
Every p-step path on a principal graph is bended and
turns to a(p,q)-bicolored path under the influence of this
magnetic field. In this sense we should say that a Kähler
graph of complex lattice is a model of a “bundle of
beams” of electrons. But on a complex Euclidean line we
have many geodesics of different directions. In order to
consider motions of charged particles which move to the
horizontal and the vertical directions at the same time, we
need to give a Kähler graph which have both horizontal
and vertical principal edges. For this sake we give other
product operations.

Given two graphsG = (V,E), H = (W,F) we define
their Kähler graphs G ⊞ H, G ⊡ H, G♦H of
Cartesian-tensor product type, of Cartesian-complement
product type and of Cartesian-lexicographical product
type as follows:

i)Their sets of vertices are the productV ×W;
ii)two vertices (v,w), (v′,w′) ∈ V × W are (v,w) ∼p
(v′,w′) if and only if eitherv= v′ andw∼ w′ in H or
w= w′ andv∼ v′ in G;

iii)two vertices (v,w), (v′,w′) ∈ V × W are (v,w) ∼a
(v′,w′) if and only if the following conditions hold;

a)v ∼ v′ in G andw ∼ w′ in H for Cartesian-tensor
product type,

b)either v 6= v′, v 6∼ v′ in G and w ∼ w′ in H, or
w 6= w′, w 6∼ w′ in H and v ∼ v′ in G for
Cartesian-complement product type,

c)eitherv 6= v′ andw∼ w′ in H, or w 6= w′ andv∼ v′

in G for Cartesian-lexicographical product type.

Here, when we make a Kähler graph of Cartesian
-complement product type, we suppose one of the
following conditions:
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i)for each vertexv ∈ V there isv′ ∈ V with v′ 6= v and
v′ 6∼ v in G;

ii)for each vertexw∈W there isw′ ∈W with w′ 6= w and
w′ 6∼ w in H.

Clearly, these product operations are commutative. It is
also clear that principal graphs of Kähler graphs made by
these operations are connected. For a vertexv of an
ordinary graphG = (V,E) we denote bydG(v) the
cardinality of the set{v′ ∈ V | v′ ∼ v} and call it the
degree atv. For a Kähler graphG = (V,E(p) ∪E(a)) we

put d(p)
G (v) = dG(p)(v) and d(a)

G (v) = dG(a)(v) and call
them the principal and the auxiliary degrees atv. WhenG
and H are of finite degree, thenG⊞ H is also of finite
degree, and whenG andH are finite graphs, thenG⊡H
and G♦H are also finite graphs. At(v,w) ∈ V ×W we
have

d(p)
G⊞H(v,w) = d(p)

G⊡H(v,w) = d(p)
G♦H(v,w) = dG(v)+dH(w),

d(a)
G⊞H(v,w) = dG(v)dH(w),

d(a)
G⊡H(v,w) = (♯V −dG(v)−1)dH(w)

+ (♯W−dH(w)−1)dG(v),

d(a)
G♦H(v,w) = (♯V −1)dH(w)+ (♯W−1)dG(v).

Example 2.For two integersn,n′ we definen ∼ n′ if and
only if n′ = n±1, and call the graph(Z,E) given by this
adjacency rule a graph of real lattice.

WhenG andH are graphs of real lattice, then principal
edges and auxiliary edges emanating from a vertex of their
Kähler graphsG⊞ H, G⊡H, G♦H of Cartesian-tensor
product type, of Cartesian-complement product type and
of Cartesian-lexicographical product type are like Figures
1, 2 and3, respectively. We note thatG⊡H andG♦H are
not locally finite in this case. The Kähler graphG⊞H is
another candidate of the model of a complex Euclidean
line.
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Fig. 1: edges at a vertex of
G⊞H
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Fig. 2: edges at a vertex of
G⊡H

We here explain the meaning of bicolored paths a bit
more. Since graphs are 1-dimensional objects, we can not
determine the direction of the action of the Lorentz force.
We therefore treat(p,q)-bicolored paths probabilistically.
For a(p,q)-primitive bicolored pathγ =(v0, . . . ,vp+q), we
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Fig. 3: edges at a vertex ofG♦H

define its probabilistic weightω(γ) by

ω(γ) =
{

d(a)
G (vp)

}−1{
d(a)

G (vp+1)−1
}−1

×·· ·×
{

d(a)
G (vp+q−1)−1

}−1
.

For a (p,q)-bicolored pathγ = γ1 · · ·γm, which is an
m-chain of (p,q)-primitive bicolored paths, we set
ω(γ) = ω(γ1) × ·· · × ω(γm). Let (p,q) be a pair of
positive integers which satisfies the condition that eitherit
consists of relatively prime integers orq= 0. For a Kähler
graph G = (E(p) ∪ E(a)) we define its (p,q)-derived
(oriented) graphG(p,q) = (V,E(p,q)) so thatv is adjacent
to v′ if and only if there is a(p,q)-primitive bicolored
pathγ with origin o(γ) = v and terminust(γ) = v′. In the
caseq= 0 we considerp-step paths alternatively. Derived
graphs may have loops and multiple edges. WhenG
satisfies that for each distinct pair(v,v′) of vertices the set
of probabilistic weights of (p,q)-primitive bicolored
paths ofv to v′ coincides with that ofv′ to v by taking
account of their multiplicities, we make a reduction and
get a non-oriented graph̃G(p,q) = (V, Ẽ(p,q),m) with
weight of edges. That is, we definev ∼ v′ in G̃(p,q) if and
only if there is a(p,q)-primitive bicolored paths ofv to
v′, and setm

(
(v,v′)

)
to be the sum of probabilistic

weights of such paths. We call this the reduced
(p,q)-derived graph. Whenp = 1, q = 0, we can always
reduce the(1,0)-derived graph. It is the original principal
graph with its degree function.

Example 3.WhenG andH are graphs of real lattice, the
reduced (1,0)-derived graph and the reduced(1,1)-
derived graph ofG⊞H are like Figures4 and5. As the
reduced(1,1)-derived graph ofG�̂H is like Figure7, one
can see the difference.
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Fig. 4: (1,0)-derived edges
at a vertex ofG⊞H
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Fig. 5: (1,1)-derived edges
at a vertex ofG⊞H
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Fig. 6: (1,0)-derived edges
at a vertex ofG�̂H
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Fig. 7: (1,1)-derived edges
at a vertex ofG�̂H

We give two more commutative product operations
obtaining connected principal graphs. LetG = (V,E),
H = (W,F) be ordinary graphs satisfying the same
condition as we posed when we made Kähler graphs of
Cartesian-complement product type. We define their
Kähler graphG>H of strong-complement product type
as follows:

i)the set of vertices is the productV ×W;
ii)two vertices (v,w), (v′,w′) ∈ V × W are (v,w) ∼p
(v′,w′) if and only if one of the following conditions
holds;
ii-a)v∼ v′ in G andw= w′,
ii-b)v= v′ andw∼ w′ in H,
ii-c)v∼ v′ in G andw∼ w′ in H,

iii)two vertices (v,w), (v′,w′) ∈ V × W are (v,w) ∼a
(v′,w′) if and only if eitherw ∼ w′ in H, v 6= v′ and
v 6∼ v′ in G, or v∼ v′ in G, w 6= w′ andw 6∼ w′ in H.

Given two graphsG= (V,E), H = (W,F) we define their
Kähler graphG♠H of complement-tensor product type as
follows:

i)the set of vertices is the productV ×W;
ii)two vertices (v,w), (v′,w′) ∈ V × W are (v,w) ∼p
(v′,w′) if and only if they satisfy one of the following
conditions;

a)v∼ v′ in G andw 6∼ w′,
b)v 6∼ v′ in G andw∼ w′ in H;

iii)two vertices (v,w), (v′,w′) ∈ V × W are (v,w) ∼a
(v′,w′) if and only if v∼ v′ in G andw∼ w′ in H.

It is clear that these operations are commutative. WhenG
and H are finite graphs, thenG> H and G♠H are also
finite graphs. At(v,w) ∈V ×W we have

d(p)
G>H(v,w) = dG(v)+dH(w)+dG(v)dH(w),

d(a)
G>H(v,w) = dG(v)(♯W−dH(w)−1)

+ (♯V −dG(v)−1)dH(w),

d(p)
G♠H(v,w) = dG(v)(♯W−dH(w))+dH(w)(♯V −dG(v)),

d(a)
G♠H(v,w) = dG(v)+dH(w).

Example 4.WhenG andH are graphs of real lattice, then
principal edges and auxiliary edges emanating from a
vertex of their Kähler graphsG > H, G♠H of
strong-complement product type and of complement-

tensor product type are like Figures8 and9. In this case
G>H andG♠H are not locally finite.
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Fig. 8: edges at a vertex of
G>H
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Fig. 9: edges at a vertex of
G♠H

3 Eigenvalues of Laplacians

In order to show properties of graphs, to study their
eigenvalues are one of ways (c.f. [7]). In this section we
study eigenvalues of Laplacians for our Kähler graphs of
product type. For a finite graphG= (V,E), the adjacency
operatorAG and the transition operatorPG acting on the
set of functions ofV are given by

AG f (v) = ∑
v′:v′∼v

f (v′), PG f (v) = dG(v)
−1

AG f (v),

respectively. The combinatorial Laplacian∆AG and the
transitional Laplacian ∆PG are defined by ∆AG f
= dG(v) f (v)− AG f (v) and ∆PG = I − PG. When the
graph is regular, that is, its degree is a constant function,
we have∆AG = dG∆PG.

In [10], we defined corresponding Laplacians for a
Kähler graphG = (V,E(p) ∪E(a)). Let (p,q) be a pair of
relatively prime positive integers. We define the(p,q)-

adjacency operatorA (p,q)
G : C(V) →C(V) and the(p,q)-

probabilistic transition operatorQ(p,q)
G : C(V) → C(V)

acting on the setC(V) of all complex-valued functions on
V by

A
(p,q)

G f (v) = ∑
γ∈Pp,q(v;G)

ωG(γ) f
(
t(γ)

)
,

Q
(p,q)
G f (v) =

1

∑
γ∈Pp,q(v;G)

ωG(γ)
∑

γ∈Pp,q(v;G)

ωG(γ) f
(
t(γ)

)
,

wherePp,q(v;G) denotes the set of all(p,q)-primitive

bicolored paths with originv. We denote byd(p)

G(p)(v) the
cardinality of the set of allp-step paths on the principal

graphG(p) with origin v, and defineD(p)
G : C(V) → C(V)

by D(p)
G f (v) = d(p)

G(p)(v) f (v). The operators

∆ (p,q)
AG

= D(p)
G −A

(p,q)
G , ∆ (p,q)

QG
= I −Q

(p,q)
G
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acting on C(V) are called the (p,q)-combinatorial
Laplacian and the (p,q)-transitional Laplacian,
respectively. When the principal graph is regular, we see

A
(p,q)

G = d(p)

G(p)P
(p,q)
G , hence find that∆ (p,q)

AG
= d(p)

G(p)∆
(p,q)
PG

.
We should note that(p,q)-Laplacians are not selfadjoint,
in general (see [4]).

When p = q = 1, we find thatA (1,1)
G = AG(p)PG(a)

and Q
(1,1)
G = PG(p)PG(a) . Similarly we can decompose

the (p,q)-adjacency operator and the(p,q)-probabilistic
transition operator into compositions of operators for the
principal graph and for the auxiliary graph (see [11]). In
this paper we treat Kähler graphs of product type made by
regular graphs. We call a Kähler graph regular if both of
its principal and its auxiliary graphs are regular. By
making use of decompositions of the adjacency and the
probabilistic transition operators, we showed the
following in [11].

Proposition 3.1. Let G = (V,E(p) ∪ E(a)) be a finite
regular Kähler graph. Suppose its adjacency operators
AG(p) , AG(a) of the principal and the auxiliary graphs are
commutative. If the eigenvalues ofAG(p) andAG(p) areλk
andρk (k= 1, . . . , ♯V), then the eigenvalues of∆

P
(p,q)
G

are

of the form

1− Fp
(
λk;d

(p)
G

)
Fq
(
ρk;d

(a)
G

)

d(p)
G

(
d(p)

G −1
)p−1

d(a)
G

(
d(a)

G −1
)q−1 (k= 1, . . . , ♯V).

Here, a sequence of polynomials
{

Fn(t;d)
}∞

n=1 is
inductively given by the relation
{

Fn+1(t;d) = tFn(t;d)− (d−1)Fn−1(t;d) (n≥ 2),

F0(t;d) = 1, F1(t;d) = t, F2(t;d) = t2−d.

By use of this result we are enough to check that our
Kähler graphs of product type have commutative
adjacency operators and to calculate their eigenvalues.

Theorem 3.1.Let G = (V,E) and H = (W,F) be finite
regular graphs whose eigenvalues of transitional
Laplacians∆PG and∆PH areµi (1 ≤ i ≤ m(= ♯V)) and
να (1 ≤ i ≤ n(= ♯W)), respectively. Then the adjacency
operatorsA(G⊞H)(p) , A(G⊞H)(a) of the principal and the
auxiliary graphs of the Kähler graphG ⊞ H of
Cartesian-tensor product type are commutative. Their
eigenvalues are given as

dG(1− µi)+dH(1−να), dGdH(1− µi)(1−να)

(1≤ i ≤ m, 1≤ α ≤ n),

respectively.

Proof. By taking the basis {δv}v∈V , {δw}w∈W of
characteristic functions ofV and W, we represent the
adjacency operatorsAG, AH by the adjacency matrices
AG = (aG

i j ), AH = (aH
αβ ). Then the adjacency matrices

A(G⊞H)(p) =
(
a(p)
(i,α),( j ,β )

)
, A(G⊞H)(a) =

(
a(a)
(i,α),( j ,β )

)
of the

principal graph and the auxiliary graph ofG⊞ H are
given as

a(p)
(i,α),( j ,β ) = aG

i j δαβ + δi j a
H
αβ ,

a(a)
(i,α),( j ,β ) = aG

i j a
H
αβ ,

respectively. Thus we find

A(G⊞H)(p)A(G⊞H)(a) = A(G⊞H)(a)A(G⊞H)(p) .

For f ∈ C(V) satisfying∆PG f = µ f and g ∈ C(W)
satisfying ∆PH g = νg, we define a functionϕ f ,g
∈ C(V ×W) by ϕ f ,g(v,w) = f (v)g(w). Since we have
AG f = dG(1 − µ) f , AHg = dH(1 − ν)g, we get our
result by direct computation.�

Theorem 3.2.Let G = (V,E) and H = (W,F) be finite
connected regular graphs whose eigenvalues of∆PG and
∆PH areµi (1≤ i ≤ m(= ♯V)) andνα (1≤ i ≤ n(= ♯W))
with µ1 = ν1 = 0. Then the adjacency operators
A(G⊡H)(p) , A(G⊡H)(a) of the principal and the auxiliary
graphs of the Kähler graphG ⊡ H of Cartesian
-complement product type are commutative. Their
eigenvalues are given as

dG(1− µi)+dH(1−να) (1≤ i ≤ m, 1≤ α ≤ n)

and

dG(n−dH−1)+dH(m−dG−1),

dH(1−να)(m−2dG−1)−dG,

dG(1− µi)(n−2dH−1)−dH,

−2dGdH(1−µi)(1−να)−dG(1−µi)−dH(1−να)

(2≤ i ≤ m, 2≤ α ≤ n),

respectively.

Proof. Let Gc = (V,Ec) denote the complement graph of
G = (V,E) which is defined so that two distinct vertices
are adjacent to each other inGc if and only if they are not
adjacent to each other inG. Similarly we denote byHc

the complement graph ofH. We denote byAGc =
(
aGc

i j

)

and AHc =
(
aHc

i j

)
the adjacency matrices ofGc and Hc,

respectively. They satisfyAGc = M − I − AG and
AHc = M − I − AH , whereM denotes the matrix all of
whose entries are 1 andI denotes the identity matrix.

By use of the same notations as in the proof of
Theorem 3.1, the adjacency matricesA(G⊡H)(p) , A(G⊡H)(a)

are given as

a(p)
(i,α),( j ,β ) = aG

i j δαβ + δi j a
H
αβ ,

a(a)
(i,α),( j ,β ) = aG

i j a
Hc

αβ +aGc

i j aH
αβ ,

respectively. As we haveaGc

i j = 1− δi j − aG
i j , aHc

αβ = 1−
δαβ −aH

αβ , we find that

A(G⊡H)(p)A(G⊡H)(a) = A(G⊡H)(a)A(G⊡H)(p) .
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Since G is connected, if we takefi ∈ C(V) with
∆PG fi = µi fi , we haveM f1 = ♯V f1 and M fi = 0 for
i ≥ 2 becausef1 is a constant function andfi (i ≥ 2) is
orthogonal tof1. HereM is the operator corresponding
to the matrix M. Since H is also connected, we have
similar properties on eigenfunctionsgα for ∆PH .
Therefore, by taking functionsϕ fi ,gα (i = 1, . . . ,m,
α = 1, . . . ,n) we get our result by direct computations.�

Theorem 3.3.Let G = (V,E) and H = (W,F) be finite
connected regular graphs whose eigenvalues of∆PG and
∆PH areµi (1≤ i ≤ m(= ♯V)) andνα (1≤ i ≤ n(= ♯W))
with µ1 = ν1 = 0. Then the adjacency operators
A(G♦H)(p) , A(G♦H)(a) of the principal and the auxiliary
graphs of the Kähler graphG♦H of Cartesian-
lexicographical product type are commutative. Their
eigenvalues are given as

dG(1− µi)+dH(1−να) (1≤ i ≤ m, 1≤ α ≤ n)

and
dG(n−1)+dH(m−1),

dH(1−να)(m−1)−dG,

dG(1− µi)(n−1)−dH,

−dG(1− µi)−dH(1−να)

(2≤ i ≤ m, 2≤ α ≤ n),

respectively.

Proof. By use of the same notations as in the proof of
Theorem 3.1, the adjacency matricesA(G♦H)(p) , A(G♦H)(a)

are given as

a(p)(i,α),( j ,β ) = aG
i j δαβ + δi j a

H
αβ ,

a(a)
(i,α),( j ,β ) = aG

i j (1− δαβ )+ (1− δi j )a
H
αβ ,

respectively. Thus we find

A(G♦H)(p)A(G♦H)(a) = A(G♦H)(a)A(G♦H)(p) .

By taking functionsϕ fi ,gα (i = 1, . . . ,m, α = 1, . . . ,n) with
eigenfunctionsfi for ∆PG and gα for ∆PH , we get our
result by direct computations.�

Theorem 3.4.Let G = (V,E) and H = (W,F) be finite
connected regular graphs whose eigenvalues of∆PG and
∆PH areµi (1≤ i ≤ m(= ♯V)) andνα (1≤ i ≤ n(= ♯W))
with µ1 = ν1 = 0. Then the adjacency operators
A(G>H)(p) , A(G>H)(a) of the principal and the auxiliary
graphs of the Kähler graphG>H of strong-complement
product type are commutative. Their eigenvalues are
given as

dG(1−µi)+dH(1−να)+dGdH(1−µi)(1−να )

(1≤ i ≤ m, 1≤ α ≤ n)

and

dG(n−dH−1)+dH(m−dG−1),

dH(1−να)(m−2dG−1)−dG,

dG(1−µi)(n−2dH−1)−dH,

−2dGdH(1−µi)(1−να)−dG(1−µi)−dH(1−να)

(2≤ i ≤ m, 2≤ α ≤ n),

respectively.

Proof. By use of the same notations as in the proof of
Theorem 3.2, the adjacency matricesA(G>H)(p) , A(G>H)(a)

are given as

a(p)
(i,α),( j ,β ) = aG

i j δαβ + δi j a
H
αβ +aG

i j a
H
αβ ,

a(a)
(i,α),( j ,β ) = aG

i j a
Hc

αβ +aGc

i j aH
αβ ,

respectively. We hence find that

A(G>H)(p)A(G>H)(a) = A(G>H)(a)A(G>H)(p) .

By taking functionsϕ fi ,gα (i = 1, . . . ,m, α = 1, . . . ,n) with
eigenfunctionsfi for ∆PG and gα for ∆PH , we get our
result by direct computations.�

Theorem 3.5.Let G = (V,E) and H = (W,F) be finite
connected regular graphs whose eigenvalues of∆PG and
∆PH areµi (1≤ i ≤ m(= ♯V)) andνα (1≤ i ≤ n(= ♯W))
with µ1 = ν1 = 0. Then the adjacency operators
A(G♠H)(p) , A(G♠H)(a) of the principal and the auxiliary
graphs of the Kähler graphG♠H of complement-tensor
product type are commutative. Their eigenvalues are
given as

dG(n−dH)+dH(m−dG),

dH(1−να)(m−2dG),

dG(1− µi)(n−2dH),

−2dGdH(1− µi)(1−να)

(2≤ i ≤ m, 2≤ α ≤ n)

and

dGdH(1− µi)(1−να) (1≤ i ≤ m, 1≤ α ≤ n),

respectively.

Proof. By use of the same notations as in the proof of
Theorem 3.2, the adjacency matricesA(G♠H)(p) , A(G♠H)(a)

are given as

a(p)(i,α),( j ,β ) = aG
i j (a

Hc

αβ + δαβ )+ (aGc

i j + δi j )a
H
αβ ,

a(a)
(i,α),( j ,β ) = aG

i j a
H
ab,

respectively. Hence we have

A(G♠H)(p)A(G♠H)(a) = A(G♠H)(a)A(G♠H)(p) .
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By taking functionsϕ fi ,gα (i = 1, . . . ,m, α = 1, . . . ,n) with
eigenfunctionsfi for ∆PG and gα for ∆PH , we get our
conclusion by direct computations.�

Two finite ordinary graphs are said to be
combinatorially isospectral (resp. transitionary
isospectral) if their combinatorial Laplacians (resp.
transitional Laplacians) have the same eigenvalues by
taking account of their multiplicities. Correspondingly,
we say two Kähler graphs are(p,q)-combinatorially
isospectral (resp.(p,q)-transitionary isospectral) if their
principal graphs are combinatorially isospectral and their
(p,q)-combinatorial Laplacians (resp.(p.q)-transitional
Laplacians) have the same eigenvalues by taking account
of their multiplicities. When two Kähler graphs are
regular, they are(p,q)-combinatorially isospectral if and
only if they are(p,q)-transitionary isospectral. Hence we
just say that they are(p,q)-isospectral. It is known that
there are many pair of isospectral regular ordinary
connected graphs having the same degrees (see [5]). Our
theorems guarantee the following.

Corollary. If we take two pairsG1,G2 and H1,H2 of
isospectral finite connected regular graphs having the
same degrees, then we get five pairs of Kähler graphs of
product types which are(p,q)-isospectral for every pair
(p,q) of relatively prime positive integers.
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[7] D. Cvetković, P. Rowlinson & S. Simić, An Introductionto

the Theory of Graph Spectra, London Math. Soc. Student
Text 75, Cambridge University Press (2010).

[8] T. Sunada, Proc. KAIST Math. Workshop8, 93–108 (1993).
[9] Yaermaimaiti, T. & T. Adachi, A note on vertex-transitive

Kähler graphs, to appear in Hokkaido Math. J.

[10] Yaermaimaiti, T. & T. Adachi, Isospectral Kähler graphs, to
appear in Kodai Math. J.

[11] Yaermaimaiti, T. & T. Adachi, Laplacians for derived graphs
of a regular Kähler graphs, to appear in C. R. Acad. Sci.
Royal Soc. Canada.

Yarmamat Tursun
is a student of PhD course
at Nagoya Institute of
Technology. He is an
international student
who comes from Ili,
Xinjiang, People’s Republic
of China. He received
the degree of bachelor of
Computer Science at Xinjiang

University. His research interests are in the areas of graph
theory and differential geometry.

Toshiaki Adachi
is Professor of Mathematics
at Nagoya Institute of
Technology. He received
the degree of Doctor
of Science (Mathematics)
at Nagoya University (Japan).
He is a referee and Editor of
several international journals
in the frame of differential

geometry. His main research interest is in differential
geometry.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Kähler graphs
	Eigenvalues of Laplacians

