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Abstract: Kahler graphs are compound graphs which consist of prith@ipd auxiliary graphs. We show some natural commutative
product operations of getting Kahler graphs whose pradcgpaphs are connected. We study eigenvalues of Laplaémarisahler
graphs obtained by these operations.
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1 Introduction product operations and so on. From the geometrical point
of view, the simplest example of a Kahler manifold
A graphG = (V,E) consists of a se¥ of vertices and a  should be a complex lin€, which can be regarded as a
set E of edges. Regarding graphs as 1-dimensionablane R? from the viewpoint of real Riemannian
CW-complexes geometers consider them to be discretgeometry. Thus we are interested in giving a model of a
models of Riemannian manifolds. Paths, which are chaingomplex line whose principal graph is a model of a real
of edges, on a graph correspond to geodesics on plane. In this paper, keeping above in our mind we add
Riemannian manifold. Being inspired by pape8$ and  five kinds of product operations. Being different from
[8], the second author began to study Kahler manifoldsoperations we gave in 1P| these operations are
from the Riemannian geometric point of view by make commutative, and give Kahler graphs whose principal
use of Kahler magnetic fields1([3] and their references). graphs are connected as 1-dimensional CW-complexes.
Also, he introduced ing] the notion of Kahler graphs as As we obtain new Kahler graphs we study eigenvalues of
discrete models of Riemannian manifolds admitting their Laplacians to show their properties.
magnetic fields. A Kahler graph is a graph whose set of  This subject was presented by the authors at
edges is divided into two disjoint subsets. We may sayinternational Conference on Recent Advances in Pure and
that a Kahler graph is a compound of two graphs. One isapplied Mathematics (ICRAPAM-2014) which was held
called the principal graph and the other the auxiliaryat Antalya, Turkey. The authors are grateful to the
graph. Geometrically, paths on the principal graph of amembers of the organizing committee of ICRAPAM-
Kahler graph are regarded as geodesics, which ar@014, especially to Professor Dr. Ekrem Savas, for their
motions of charged particles without getting the influencenospitality during their stay at Antalya.
of magnetic fields. In order to show the influence of
magnetic fields, we use the auxiliary graph. We regard a
p-step path in the principal graph followed bygestep .
path in the auxiliary graph as a motion of a charged2 Kahler graphs
particle under the influence of a magnetic field of strength
of Lorentz forceq/p. A graphG = (V,E) is a pair of a seV of vertices and a
When we introduce new notions, it is needless to saysetE of edges. In this paper we suppose that each edge
that the most important thing is to construct many gooddoes not have its orientation. Also, we suppose that
examples. In9] and [10], we gave examples of Kahler graphs do not have loops and multiple edges. Here, a loop
graphs; Cayley Kahler graphs, Kahler graphs obtained bys an edge joining a vertex and itself, and multiple edges
the complement-filling operation, those obtained byare edges joining the same pair of vertices. We say two
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verticesv,V € V to be adjacent to each other if there is an These Kahler graphs have common principal graphs, and
edge joining them. In this case we denotevasV'. they are not connected as 1-dimensional CW-complexes.

We say a grapls = (V,E) to beKahlerif the setE is Moreover, these product operations are not commutative,
divided into two subsets asE = E(® U E®@  thatisGOH # HOG, for example.
(EPNE®@ = @) and if it satisfies that both therincipal From physical point of view, we may say that a
graph GP) = (V,E(P) and the auxiliary graph G® Kahler graph of complex lattice shows motions of
= (V,E@) do not have hairs. That is, for an arbitrary charged particles which move to the horizontal direction.
On a graphG = (V,E), a chainy = (vo,...,Vn)
eV x---xV of n-edges (i.evi_1 ~ Vv fori=1,...,n)is

. ; said to be am-step path. We say a path contains a
p ; . L : .

emapatlng fromv. We call an edgg)belo!’\.glng tE__'( ) backtracking if there isip (1 < ip < n—1) with
principal and call that belonging &'® auxiliary. Given Vig—1 = Viy+1. Paths without backtrackings are considered
two vertices,V, we denote as ~p V if they are adjacent 15 correspond to geodesics on a Riemannian manifold.
to each other irG(P), and denote asg ~4 V if they are Coming back to a Kahler graph = (V,E(P UE®@), we
adjacent to each other B The reason why we take a pair(p,q) of relatively prime positive integers. A
con.5|der such compound g(aphs is that we intend to giVg p+q)-step pathy = (Vo,. .., Vp+q) Without backtrackings
a discrete model of a manifold with complex structure. on G is said to be & p,q)-primitive bicolored pathif it

vertex v € V there exist at least two edges B(P)
emanating fromv and exist at least two edges HE®

Since graphs are 1-dimensional objects, it is not so eas¥atisfiesvi_1 ~p Vi for i = 1,....p and vi_1 ~a v for
to introduce an object of real 2-dimension. We thereforej — p+1,... p+q. An m(p+ q)-step path y =
use such compound graphs. (Vo,---,Vim(p+q)) Without backtrackings is said to be a

The simplgst example of a Kahler manifold is a (p,q)-bicolored path if each(p+ q)-step subpath
complex Euclidean space. We are hence interested Iy, — i

. L - = (V(jfl)(erq)v---an(p+q))a j = 1....m is a
considering its discrete model. (p,q)-primitive bicolored path. As we mentioned §1,

we consider (p,q)-bicolored paths show motions of
charged particles under a magnetic field of strergth.
Every p-step path on a principal graph is bended and
turns to a(p, g)-bicolored path under the influence of this
magnetic field. In this sense we should say that a Kahler
graph of complex lattice is a model of a “bundle of
beams” of electrons. But on a complex Euclidean line we
have many geodesics of different directions. In order to
We see that a Kahler graph of complex lattice consistsconsider motions of charged particles which move to the
of horizontal lines for the principal graph and vertical Norizontal and the vertical directions at the same time, we
lines for the auxiliary graph. In other words, it is a N€ed to give a Kahler graph which have both horizontal
“product” of a principal graph of real lattice and an and vertical pr!nC|paI edges. For this sake we give other
auxiliary graph of real lattice. It is known that we have Productoperations. ,
four typical ways of product operations of graphs; Given two graphss = (V,E),H = (W,F) we define
Cartesian product, strong product, semi-tensor product€ir Kahler graphs GE H, G H, GOH of
and lexicographic product. Viewing a Kahler graph of Cartesian-tensor product type, of Cartesian-complement

complex lattice we defined four kinds of Kahler graphs of Product type and of Cartesian-lexicographical product
product type in 10] in the following manner. Let type as follows:

G = (V,E),H = (W,F) be two graphs. We define Kahler  i)Their sets of vertices are the proditcik W;

graphs of Cartesian product ty@&H, of strong product ~ i)two vertices (v,w), (V,wW) € V x W are (v,w) ~p
type GXH, of semi-tensor product typ&&H and of (V,w) if and only if eitherv = v andw ~ w’ in H or

lexicographic product typ&wH as follows. w=w andv~VinG;
xicographic product ypee W iiitwo vertices (v,w), (V,w) € V x W are (v,w) ~g

Example 1We take a set of lattice = {z=x++/—1y €

C | x,y € Z}, whereZ denotes the set of integers. For two
verticesz=x++/—1y,Z =X ++/—1y €V we definez~,

Z ifand only if Z —z= +1 holds, and define~, Z if and
only if Z —z= ++/—1 holds. With these adjacency rules
we get a Kahler graph. We shall call this a Kahler graph of
complex lattice.

i) Their sets of versices are the prodick W: (V,w) if and only if the following conditions hold;
ii)For two vertices(v,w),(V,W) € V x W, we define alv ~V in G andw ~ W in H for Cartesian-tensor
(v,w) ~p (V,W) ifand only if v~V in Gandw = w': product type,
iiiyFor two vertices (v,w), (V,wW) € V x W, we define b)eitherv # Vv, v £ V in G andw ~ W in H, or
(VW) ~a (V,W) if and only if they satisfy the W#W, wot W in Handv~V in G for
following conditions: R Cartesian-complement product type,
ayv =V andw~ w in H for GOH, c)eitherv# Vv andw~ w in H, orw# w andv ~ V
b)eitherv = Vv andw ~w in H, orv~V in G and in G for Cartesian-lexicographical product type.
w~ W inH for GXH, N Here, when we make a Kahler graph of Cartesian
c)V~ V in Gandw~ w in H for GeH, -complement product type, we suppose one of the
dw~w in H for G>H. following conditions:
(© 2015 NSP
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iYfor each vertex € V there isvV € V with vV # v and
vV tvin G;

iiyfor each vertexw € W there isw' € W with w' # wand
W AL win H.

Clearly, these product operations are commutative. It is

also clear that principal graphs of Kahler graphs made by

these operations are connected. For a vexteaf an
ordinary graphG = (V,E) we denote bydg(v) the
cardinality of the set{V € V |V ~ v} and call it the
degree aw. For a Kahler graplG = (V,E(P UE®) we
put d (v) = dgp (v) and d&(v) = dgw (v) and call
them the principal and the auxiliary degrees.atvhenG

andH are of finite degree, the@HH is also of finite
degree, and whe® andH are finite graphs, the@ -1 H

and GOH are also finite graphs. Atv,w) € V x W we
have

d® (v,w) = dP (vw) = dP) (v,w) = dg (V) + dy (w),

GHH GLH GOH
A (% W) = do(v)di (w),
A2, (v w) = (3V — d(v) — 1)di (W)
+ (fW — dn (W) — 1)dg (V)
déi%H (v,w) = (8V — 1)dn (W) + (fW — 1)dg(V).

Example Z-or two integers,n’ we definen ~ ' if and
only if " =n+1, and call the grapliZ, E) given by this
adjacency rule a graph of real lattice.

WhenG andH are graphs of real lattice, then principal
edges and auxiliary edges emanating from a vertex of thei
Kahler graphsGEHH, GEIH, GOH of Cartesian-tensor

product type, of Cartesian-complement product type and?

of Cartesian-lexicographical product type are like Figure
1, 2 and3, respectively. We note th&C1H andGOH are
not locally finite in this case. The Kahler gra@tiH is

Fig. 3: edges at a vertex @OH

define its probabilistic weighib(y) by

w(y) = {0 (vp)} H{dP (vpir) — 1} 1

oo x {d@ (Vprqo1) =1} %

For a (p,q)-bicolored pathy = y1---ym, which is an
m-chain of (p,q)-primitive bicolored paths, we set
w(y) = w(y1) x -+ X W(ym). Let (p,q) be a pair of
positive integers which satisfies the condition that either
consists of relatively prime integers @= 0. For a Kahler
graph G = (E?® UE®@) we define its (p,q)-derived
(oriented) graptG(P9 = (V,E(P9)) so thatv is adjacent
to V' if and only if there is a(p,q)-primitive bicolored
pathy with origin o(y) = v and terminus(y) = V. In the
caseg = 0 we considep-step paths alternatively. Derived
graphs may have loops and multiple edges. Wiin
satisfies that for each distinct pdir V') of vertices the set
of probabilistic weights of (p,q)-primitive bicolored
aths ofv to V' coincides with that of/ to v by taking
ccount of their multiplicities, we make a reduction and
et a non-oriented grapiG(P® = (V,E(P9 m) with
weight of edges. That is, we defire- v in G(P9 if and
only if there is a(p,q)-primitive bicolored paths o¥ to
Vv, and setm((v,V)) to be the sum of probabilistic

another candidate of the model of a complex Euclidean?veights of such paths. We call this the reduced

line.

Fig. 1: edges at a vertex of
GHH

Fig. 2: edges at a vertex of
GOH

We here explain the meaning of bicolored paths a bit

more. Since graphs are 1-dimensional objects, we can not

determine the direction of the action of the Lorentz force.
We therefore treafp, q)-bicolored paths probabilistically.
For a(p,q)-primitive bicolored patly = (vo, ..., Vpiq), we

(p,q)-derived graph. Whep = 1, g = 0, we can always
reduce thg1,0)-derived graph. It is the original principal
graph with its degree function.

Example 3When G andH are graphs of real lattice, the
reduced (1,0)-derived graph and the reduced,1)-
derived graph ofEHH are like Figurest and5. As the
reduced,1)-derived graph o6CH is like Figure?7, one
can see the difference.

Fig. 4: (1,0)-derived edges
at a vertex olGHH

Fig. 5: (1,1)-derived edges
at a vertex olGHH
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tensor product type are like Figur8sand9. In this case

Gx H andGeH are not locally finite.

e Joe—eo o] o ° °

[ ] [ ] [ ] [ ] [ ] [ ] [ ] ° ‘ ° ’ °

° ° ° ° ° ° ° ° . ° o \ / .

~ \\ /’ -
Fig. 6: (1,0)-derived edges Fig. 7: (1,1)-derived edges . — K o
at a vertex ofGCIH at a vertex ofGCIH e IV
/ A

° é ° » °

We give two more commutative product operations Fig. 8: edges at a vertex of  Fig. 9: edges at a vertex of
obtaining connected principal graphs. Lét= (V,E), GxH GaH
H = (W,F) be ordinary graphs satisfying the same
condition as we posed when we made Kahler graphs of
Cartesian-complement product type. We define their
Kahler graphG % H of strong-complement product type ) .
as follows: 3 Eigenvalues of Laplacians

i)the set of vertices is the produétx W;
iijtwo vertices (v,w), (V,W) € V. x W are (,w) ~p
(V,w) if and only if one of the following conditions
holds;
ii-a)v~Vin Gandw=w,
ii-b)v=Vv andw~w inH,
ii-c)v~V inGandw~w inH,
iiijtwo vertices (v,w), (V,W) € V x W are (V,W) ~a _ _ -1
(V,w) if and only if eitherw ~ w' in H, v# Vv and ) \/ngf(\/)’ Fe V) = do(V) T (V)
VAV ING, orv~VinG,w#W andw 4w in H.

Given two graph$ = (V,E), H = (W,F) we define their

In order to show properties of graphs, to study their
eigenvalues are one of ways (c.T])} In this section we
study eigenvalues of Laplacians for our Kahler graphs of
product type. For a finite grapd = (V,E), the adjacency
operatore/g and the transition operato?s acting on the
set of functions o¥ are given by

respectively. The combinatorial Laplaciah,, and the
transitional LaplacianA», are defined by A f

KahlergraprGQH of complement-tensor product type as _ do(V) (V) — s f(v) and Aw, = | — Ps. When the
follows : L G . .
' graph is regular, that is, its degree is a constant function,
i)the set of vertices is the produétx W; we haved . = dcA .
ijtwo vertices (v,w), (V,W) € V. xW are (,w) ~p In [10], we defined corresponding Laplacians for a
(V,w) if and only if they satisfy one of the following Kahler graphG = (V,E(P UE(®). Let (p,q) be a pair of
conditions; relatively prime positive integers. We define the,q)-
ay ~ V' in G andw % W, adjacency operator/."¥ : C(V) — C(V) and the(p, q)-

b)v £V in Gandw~ w in H; I . !
iijwo vertices (v,w), (V,w) € V x W are (v,w) ~,  Probabilistic transition operato2Y : C(v) — C(V)

(V,w) if and only ifv ~ v in G andw ~ W in H acting on the se€(V) of all complex-valued functions on
’ ' V by

It is clear that these operations are commutative. W&en
andH are finite graphs, the@ x H andGAH are also /(P9 () — f(t(y)),
finite graphs. Atv,w) € V x W we have © v YePBp,q(ViG) A

(p) _ 1
dgop (VW) = dg (V) + dn (W) + dg(V)dn (W), 2Pt (v) = —Z i ws (V)T (t(y)),
A (VW) = do(V)(BW — dn (W) — 1) xS o VPRl

+ (8V —dg(v) — 1)dn (W), _

) whereBpq(v;G) denotes the set of allp,q)-primitive
dgan (W W) = Ao (V) (W — dn (W)) + du (W) (#V — do(V)), bicolored paths with origiv. We denote b)dgz)) (v) the
dg’zH (v,w) = dg(V) + dy (w). cardinality of the set of alp-step paths on the principal

, graphG(P with origin v, and defined” : C(V) — C(V)
Example AVhenG andH are graphs of real lattice, then P )
principal edges and auxiliary edges emanating from & De f(V) =dg, (V) f(v). The operators
vertex of their Kahler graphsG x H, G&H of
strong-complement product type and of complement- A%q> =D — P9, Agc’;w =1- 99

(@© 2015 NSP
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acting on C(V) are called the (p,q)-combinatorial  principal graph and the auxiliary graph @HH are
Laplacian and the (p,q)-transitional Laplacian, givenas

respectively. When the principal graph is regular, we see aP a,-Gé + &iaHl
(PA) _ 4(P) (PA) : (pa) _ 4(P) A(PO) (o). (3.8) — 4 7B T A Cap
Adg " =d5p P hence find t.haﬂ% = dG<p>A% : A _ G
We should note thatp,q)-Laplacians are not selfadjoint, (i.a).(j,8) — %j%ap
in general (seed]). 1 respectively. Thus we find
When p =q=1, we find that;z%G( D= Dp) P
and 3871) = Pgm Pg@- Similarly we can decompose Acar) P AcaH)@ = AcaH)@ AcaH)® -

the (p, q)-adjacency operator and tti@, g)-probabilistic o
transition operator into compositions of operators for the ~ For f € C(V) satisfyingA, f = uf andg € C(W)
principal graph and for the auxiliary graph (seéd]). In ~ satisfying Az,9 = vg, we define a functiongy g
this paper we treat Kahler graphs of product type made bye C(V x W) by @1 4(v,w) = f(v)g(w). Since we have
regular graphs. We call a Kahler graph regular if both of #Gf = do(1 — u)f, @hg = du(1—v)g, we get our
its principal and its auxiliary graphs are regular. By result by direct computationJ
making use of decompositions of the adjacency and the'heorem 3.2.Let G = (V,E) andH = (W,F) be finite
probabilistic transition operators, we showed the connected regular graphs whose eigenvalue$.gf and
following in [11]. Agp, arepi (1<i<m(=£V))andvy (1<i<n(=1W))
Proposition 3.1. Let G = (V,E(®) UE®) be a finite With p1 = vi = 0. Then the adjacency operators
regular Kahler graph. Suppose its adjacency operator§/(cam)®» #camy@ Of the principal and the auxiliary
), @ Of the principal and the auxiliary graphs are graphs of the Kahler graphG I H of Cartesian
commutative. If the eigenvalues ofy, andy;, ared, ~ -complement product type are commutative. Their
andpy (k=1,...,4V), then the eigenvalues & o are eigenvalues are given as

G

of the form de(l—p)+di(l-ve) (1<i<mil<a<n)

Fo(Acde) Fa(p dg)

q and
— —  (k=1,...,4V).
AP (AP 0P 0 (1)

dG(n—dH —1) + dH(m—dG—l),
Here, a sequence of polynomial§F,(t;d)}~ , is dh (1= v )(M—2dg—1) — dg,

inductively given by the relation de(1— ) (n—2dy —1) — du,
- (

2dcdH (1—14) (1—vy) —da(1— i) — d(1—vg
{Fm(t;d)=tFn<t:d>—<d—1>Fn_1<t:d> (n>2), e o Lot

00

Fot;d)=1, Fy(t;d)=t, Fy(t;d)=t>—d.
respectively.

By use of this result we are enough to check that ourpygof. Let G¢ = (V,E®) denote the complement graph of
Kahler graphs of product type have commutative — (v E) which is defined so that two distinct vertices
adjacency operators and to calculate their eigenvalues. gre adjacent to each other@ if and only if they are not
Theorem 3.1.Let G = (V,E) andH = (W,F) be finite  adjacent to each other 8. Similarly we denote byH°
regular graphs whose eigenvalues of transitionalthe complement graph d¢f. We denote byAge = (a1-‘13°)
Laplaciansi s, andAz, arepi (1 <i<m(=gV)) and  andAye = (alf’) the adjacency matrices @° and H®,

Va (1 <i < n(=tW)), respectively. Then the adjacency respectively. ‘They satisfyAe: — M — | — Ag and
operatorse ggyy (v, ¥(gmu)@ Of the principal and the  Ac — M —| — A4, whereM denotes the matrix all of
auxiliary graphs of the Kahler graptG H H of whose entries are 1 ahdlenotes the identity matrix.
Cartesian-tensor product type are commutative. Their By use of the same notations as in the proof of

eigenvalues are given as Theorem 3.1, the adjacency matrideg ) Agmn)@
do(1— 1) +du(1—va), dedn(l— ) (1—vg) are given as
(1<i<mil<a<n), agfjj),“’m:aﬁaa,ﬁajagp,
respectively. agﬁ)a Lip = aﬁagg n aﬁaEB,

Proof. By taking the basis{d}vev, {Owlwew Of
characteristic functions o and W, we represent the respectively. As we hava?c =1-¢§;-a°, als —1—
adjacency operators/s, <74 by the adjacency matrices ! 17 "ap
Ac = (af), Au = (agﬁ). Then the adjacency matrices

() N (Y
AGam)e = (a(i,a),(j,[}))’ Acam)@ = (a(i,a),(j,p)) of the Acar) oA car)@ = Acar)@AcmH)® -

3ap — 8y, We find that

(@© 2015 NSP
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Since G is connected, if we take; € C(V) with
Ay fi = pifi, we have.z fy =V f, and . i = O for
i > 2 becausdf; is a constant function anél (i > 2) is
orthogonal tof;. Here.# is the operator corresponding
to the matrixM. SinceH is also connected, we have
similar properties on eigenfunctiongq for Ag,.
Therefore, by taking functionspys g, (i = 1,...,m
a =1,...,n) we get our result by direct computatiofs.

Theorem 3.3.Let G = (V,E) andH = (W,F) be finite
connected regular graphs whose eigenvaluesgf and
Ay, arep (L<i<m(=4V))andvg (1 <i<n(=4W))
with u; = vy = 0. Then the adjacency operators
gf(GOH)@, "Q{(G<>H><a> of the principal and the auxiliary
graphs of the Kahler graphGOH of Cartesian-

lexicographical product type are commutative. Their

eigenvalues are given as

de(l— ) +di(1-ve) (I<i<mil<a<n)

and
de(n—1) 4+ dy(m-1),
dn(1—vg)(m—1) —dg,
do(1— pi)(n—1) —dn,
—de(1— ) —du(1—vq)
2<i<m,2<a<n),
respectively.

Proof. By use of the same notations as in the proof of @gam)®

Theorem 3.1, the adjacency matridq%w)(p), AGom)@
are given as

a1j Gﬁ_'—djac{ﬁa
au(l 50{3) (1_(;])3-?37

respectively. Thus we find

A(G(}H)(D)A(GQH)(a) = A(G(}H)(a)A(GQH)(p)

By taking functionspy, g, (i=1,....m a =1,...,n) with
eigenfunctionsf; for Az, andgq for Ay, we get our
result by direct computations]

Theorem 3.4.Let G = (V,E) andH = (W,F) be finite
connected regular graphs whose eigenvalue$ gf and
Ay, arefy (1 g [ g m(=4§V)) andvg (1 <i < n(=§W))
with = 0. Then the adjacency operators
D GxH) (P d(G*H) of the principal and the auxiliary

graphs of the Kahler grapB x H of strong-complement

product type are commutative. Their eigenvalues are

given as

de(1—pi) + du(1—vg) + dedu (1— i) (1—Vvq)
1<i<ml<a<n)

and

dG(n—dH—l) +dy (m—dG—l),

dH(l Va )(m—ZdG—l)—dG,
dG(l u.)(n—ZdH—l)—dH,
— 2dgdH (1— i) (1-Va) — de(1—pi) — dn(1-Va)

2<i<m2<a<n),

respectively.

Proof. By use of the same notations as in the proof of
Theorem 3.2, the adjacency matridgg.. ,; ), Agxh)@

are given as

1.(1.8) = 81 Oap + 8j8p + &fap:
_ AG,H® GC.H

)(i.8) = &i%ap T &j qap;

respectively. We hence find that

AcsH)PAGH)@ = AGsH)@AGsH)®P -

By taking functionspy, g, (i=1,....m a =1,...,n) with
eigenfunctionsf; for Az, andgq for Ay, we get our
result by direct computations]

Theorem 3.5.Let G = (V,E) andH = (W,F) be finite
connected regular graphs whose eigenvaluesgf and
Ay, arep (L<i<m(=4V))andvg (1 <i<n(=4W))

with 11y = 0. Then the adjacency operators
d(G*H)(a) of the principal and the auxiliary
graphs of the Kahler grapGéH of complement-tensor
product type are commutative. Their eigenvalues are
given as

(2§ gm,zgagn)
and
dedn (1 — pi)(1—vq)

respectively.
Proof. By use of the same notations as in the proof of

(1<i<m1<a<n),

Theorem 3.2, the adjacency matrid&qg.mm A(G‘H)(a)
are given as
aEfL) (1.8) = &] (@ aB +8,p) + (@7 + &))al ap:
aE ,) al] aaba
respectively. Hence we have
A(GQH><p)A(GQH)<a) = A(G‘H)(a)A(GQH)“))

(@© 2015 NSP
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By taking functionspy, g, (i=1,...,m, a =1,...,n) with [10] Yaermaimaiti, T. & T. Adachi, Isospectral Kahler greg to

eigenfunctionsf; for Az, andgq for Ay, we get our
conclusion by direct computatioris.
Two finite ordinary graphs are said to be

combinatorially  isospectral  (resp.  transitionary
isospectral) if their combinatorial Laplacians (resp.

transitional Laplacians) have the same eigenvalues by

taking account of their multiplicities. Correspondingly,
we say two Kahler graphs arép,q)-combinatorially
isospectral (resp(p,q)-transitionary isospectral) if their
principal graphs are combinatorially isospectral andrthei
(p,q)-combinatorial Laplacians (resgp.q)-transitional
Laplacians) have the same eigenvalues by taking accour
of their multiplicities. When two Kahler graphs are
regular, they arép, q)-combinatorially isospectral if and
only if they are(p,q)-transitionary isospectral. Hence we
just say that they arep, g)-isospectral. It is known that

appear in Kodai Math. J.

[11] Yaermaimaiti, T. & T. Adachi, Laplacians for derivedaghs
of a regular Kahler graphs, to appear in C. R. Acad. Sci.
Royal Soc. Canada.
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theorems guarantee the following.

Corollary. If we take two pairsG;,G, and Hi,Hy of
isospectral finite connected regular graphs having the
same degrees, then we get five pairs of Kahler graphs o
product types which arép,q)-isospectral for every pair
(p,q) of relatively prime positive integers.
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