The Homomorphism Maps between Variable Threshold Concept Lattice and AFS Algebras*

Lidong Wang ${ }^{1,2}$ and Xiaodong Liu ${ }^{1,2}$
${ }^{1}$ Research Center of Information and Control Dalian University of Technology, Dalian 116024, P.R. China
${ }^{2}$ Department of Mathematics,
Dalian Maritime University, Dalian 116026, P.R. China
Email Address: wld1979@yahoo.com.cn

Received Jan. 29, 2009; Revised March 24, 2009; Accepted 26, 2009.

Abstract

Variable threshold concept lattice (VTCL) was proposed by Ma et al.(2006), which provide a new parameterized way to obtain formal concepts from data with fuzzy attributes. Axiomatic Fuzzy Set (AFS) algebras were proposed by Liu (1998), which are new semantic methodology relating to the fuzzy theory. In this paper, in order to explore the relationship between the AFS algebras and VTCL, three algebra homomorphism maps are established, by which one can find that AFS algebras have similar properties to VTCL.

Keywords: AFS algebra, variable threshold concept lattice, completely distributive lattice, homomorphism map

1 Introduction

Formal concept analysis (FCA) originally proposed by Wille [6], which is an important theory for data analysis and knowledge discovery. In the past decades, FCA has great development in theory, and has become a powerful tool to deal with data. In artificial intelligence, FCA is used as a knowledge representation mechanism and as a conceptual clustering method [5,7, 16]. In database theory, FCA has extensively been used for design and management of class hierarchies [$4,8,18,21,22$]. Concept lattice, or Galois lattice, is the core of the mathematical theory of FCA. Concept lattice is a form of a hierarchy in which each node (formal concept) represents a subset of objects (extent) with their common attributes (intent). The characteristic of concept lattice theory lies in reasoning on the possible attributes of data sets [25]. The classical concept lattices only reflect the accurate relationships between objects and attributes, while the fuzzy concept lattices [1,2,15] show the uncertain relationships between objects and attributes. Since there exists a great of uncertain in real world, it is important and interesting to study the fuzzy concept lattice. While the huge number of fuzzy formal concepts is a drawback, in order to track this problem, Ma and Zhang proposed fuzzy concept lattices with a variable threshold [15]. Compared to

[^0]the classical concept lattice and the fuzzy concept lattice, the fuzzy formal context with a variable threshold will be simpler in terms of the number of formal concepts. The process of generating the variable threshold concept lattice can be viewed as a process of choosing representative concepts from generation of a concept lattice.

AFS algebras were proposed by Liu [10,11], which are new approach relating to the semantic interpretations of fuzzy attribute. An AFS algebra is a family of completely distributive lattice [19]. Recently, AFS algebras have been further developed and applied to fuzzy clustering analysis [14], fuzzy decision trees [12] and concept representations [9, 20, 23], etc. About the detail properties of AFS algebras, please see [9-11,13].

The main purpose of this paper is to explore the homomorphism relationship between VTCL and AFS algebras. The remain of paper is organized as follows: In Section 2, some basic notions pertinent to this paper are introduced. In Section 3, three algebra homomorphism maps between AFS algebras and VTCL are established to show that AFS algebras have similar properties VTCL. Finally, conclusions are drawn in Section 4.

2 Preliminaries of the AFS algebras and VTCL

In this section, we recall some definitions and present several pertinent results of VTCL and AFS algebras, i.e., $E I, E I I, E^{\#} I$ algebra. There exist few different definitions about VTCL [3, 15, 24], we adopt the definition introduced by [15].

2.1 Variable threshold concept lattice (VTCL)

Definition 2.1. ([15]) (Fuzzy Formal Context). A fuzzy formal context is a triple $K=$ $(X, M, I=\phi(X, M))$, where X is a set of objects, M is a set of attributes, and I is a fuzzy set on domain $X \times M$. Each relation $(x, m) \in I$ has a membership value $\mu(x, m)$ in $[0,1]$.

Definition 2.2. ($[15])$ Let (X, M, \mathcal{I}) be a fuzzy formal context and $\delta \in(0,1]$. A pair (A, B) is referred to as a variable threshold formal concept, for short, a variable threshold concept, of (X, M, I), if and only if $A \subseteq X, B \subseteq M, A^{\prime \delta}=B$ and $A=B^{\prime \delta} . A$ is referred to as the extent and B the intent of (A, B). We denote by $\mathcal{B}_{\delta}(X, M, \mathcal{I})$ the set of all variable threshold concepts of a fuzzy formal context (X, M, \mathcal{I}), where
$A^{\prime \delta}=\left\{b \in B \mid(a, b) \in \mathcal{I}_{\delta}\right.$, for all $\left.a \in A\right\}$,
$B^{\prime \delta}=\left\{a \in A \mid(a, b) \in \mathcal{I}_{\delta}\right.$, for all $\left.b \in B\right\}$,
$(a, b) \in \mathcal{I}_{\delta}$ denotes the degree that the object a has the attribute b, or the degree that b is possessed by a no less than δ. i.e. $\mu(a, b) \geq \delta$.

Lemma 2.1. ([15]) For a fuzzy formal context (X, M, \mathcal{I}), the following properties hold: for all $A_{1}, A_{2}, A \subseteq X, B_{1}, B_{2}, B \subseteq M$ and $\delta \in(0,1]$,

1. $A_{1} \subseteq A_{2} \Rightarrow A_{2}^{\prime \delta} \subseteq A_{1}^{\prime \delta}, \quad B_{1} \subseteq B_{2} \Rightarrow B_{2}^{\prime \delta} \subseteq B_{1}^{\prime \delta}$.
2. $A \subseteq A^{\prime \delta^{\prime} \delta}, B \subseteq B^{\prime \delta^{\prime} \delta}$
3. $A=A^{\prime} \delta^{\prime} \delta^{\prime} \delta, B=B^{\prime} \delta^{\prime} \delta^{\prime} \delta$.
4. $A \subseteq B^{\prime \delta}, B \subseteq A^{\prime \delta}$.
5. $\left(A_{1} \bigcup A_{2}\right)^{\prime \delta}=A_{1}^{\prime \delta} \bigcap A_{2}^{\prime \delta},\left(B_{1} \bigcup B_{2}\right)^{\prime \delta}=B_{1}^{\prime \delta} \bigcap B_{2}^{\prime \delta}$.
6. $\left(A_{1} \cap A_{2}\right)^{\prime \delta} \supseteq A_{1}^{\prime \delta} \bigcup A_{2}^{\prime \delta},\left(B_{1} \cap B_{2}\right)^{\prime \delta} \supseteq B_{1}^{\prime \delta} \bigcup B_{2}^{\prime \delta}$.
7. $\left(A^{\prime \delta^{\prime} \delta}, A^{\prime \delta}\right)$ and $\left(B^{\prime \delta}, B^{\prime \delta^{\prime} \delta}\right)$ are variable threshold concepts.

Table 2.1: Descriptions of features [17]

	outlook			temperature	humidity	windy?	
x_{i}	rain	sunny	overcast	temp $\left({ }^{\circ} F\right)$	humid (\%)	yes	no
x_{1}	1	0	0	71	96	1	0
x_{2}	0	0	1	72	90	1	0
x_{3}	0	0	1	83	78	0	1
x_{4}	1	0	0	75	80	0	1
x_{5}	0	1	0	75	70	1	0
x_{6}	0	1	0	85	85	0	1

Lemma 2.2. ([15]) Let (X, M, \mathcal{I}) be a fuzzy formal context, $\delta_{1}, \delta_{2} \in(0,1]$ and $\delta_{1}<\delta_{2}$, Then for all $A \subseteq X, B \subseteq M$, the following properties hold:

1. $A^{\prime} \delta_{1}{ }^{\prime} \delta_{2} \subseteq A^{\prime} \delta_{1}{ }^{\prime} \delta_{1} \subseteq A^{\prime} \delta_{2}{ }^{\prime} \delta_{1}, B^{\prime \delta_{1} \delta_{2}} \subseteq B^{\prime \delta_{1} \delta_{1}} \subseteq B^{\prime} \delta_{2}{ }^{\prime} \delta_{1}$.
2. $A^{\prime} \delta_{1}{ }^{\prime} \delta_{2} \subseteq A^{\prime} \delta_{2}{ }^{\prime} \delta_{2} \subseteq A^{\prime} \delta_{2}{ }^{\prime} \delta_{1}, B^{\prime} \delta_{1} \delta_{2} \subseteq B^{\prime} \delta_{2}{ }^{\prime} \delta_{2} \subseteq B^{\prime} \delta_{2}{ }^{\prime} \delta_{1}$.

Lemma 2.3. ([15]) Let (X, M, \mathcal{I}) be a fuzzy formal context, $\delta \in(0,1],\left(A_{1}, B_{1}\right)$, $\left(A_{2}, B_{2}\right) \in B_{\delta}(X, M, \mathcal{I})$ are ordered by $\left(A_{1}, B_{1}\right) \leq\left(A_{2}, B_{2}\right) \Leftrightarrow A_{1} \subseteq A_{2}\left(\Leftrightarrow B_{2} \subseteq\right.$ $\left.B_{1}\right)$, Then $\left(\mathcal{B}_{\delta}(X, M, \mathcal{I}), \leq\right)$ is a complete distribute lattice, and conjunction and disjunction given by:

1. $\left(A_{1}, B_{1}\right) \wedge\left(A_{2}, B_{2}\right)=\left(A_{1} \cap A_{2},\left(B_{1} \cup B_{2}\right)^{\prime} \delta^{\prime} \delta\right)$,
2. $\left(A_{1}, B_{1}\right) \vee\left(A_{2}, B_{2}\right)=\left(\left(A_{1} \cup A_{2}\right)^{\prime \delta^{\prime} \delta}, B_{1} \cap B_{2}\right)$.

2.2 A review of the AFS algebras

In this section, we recall some notations and present several pertinent results of AFS algebras. The following example, which employs the features table from [17], serves as an introductory illustration of the AFS algebras.
Example 2.1. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{6}\right\}$ be a set of 6 cases and their features which are described by real numbers (temperature, humidity), Boolean values (outlook, windy). Let $M=\left\{m_{1}, m_{2}, \ldots, m_{10}\right\}$ be the set of fuzzy or crisp attributes on X and each $m \in M$ associates to a single feature. Where m_{1} : "rain", m_{2} : "sunny", m_{3} : "overcast", m_{4} : "hot", m_{5} : "cool", m_{6} :"about $80^{\circ} F^{\prime}$ ", m_{7} : "humid", m_{8} : "dry", m_{9} : "windy", m_{10} : "no windy". The elements of M are viewed as "elementary" attributes.

Many new attributes can be generated by Boolean conjunction and disjunction of the attributes in M. For instance, $A=\left\{m_{1}, m_{6}\right\} \subseteq M$, it implies a new fuzzy attribute ("complex attribute") "the rain day which temperature is about $80^{\circ} F^{\prime}$ ", which associates to the features sunny and temperature. $\sum_{i \in I} A_{i}$, which is a formal sum of the attributes $A_{i} \subseteq M, i \in I$. For example, we may have $\gamma=m_{1} m_{6}+m_{1} m_{9}$ which translates as "the rain day which temperature is about $80^{\circ} \mathrm{F}^{\prime}$ " or "windy rain day" (the " + " denotes here a disjunction of attributes). For $A_{i} \subseteq M, i \in I, \sum_{i \in I} A_{i}$ has a well-defined meaning such as the one we have discussed above. By a straightforward comparison of

$$
\begin{equation*}
\gamma_{1}=m_{1} m_{6}+m_{1} m_{9} \quad \text { and } \quad \gamma_{2}=m_{1} m_{6}+m_{1} m_{9}+m_{1} m_{5} m_{9} \tag{2.1}
\end{equation*}
$$

we conclude that the expressions of γ_{1} and γ_{2} are equivalent in semantics. Considering the terms of γ_{2}, for any x, if x satisfies the condition $m_{1} m_{5} m_{9}$, then it must satisfies $m_{1} m_{9}$.

Therefore, the term $m_{1} m_{5} m_{9}$ is redundant in semantics when forming the fuzzy attribute γ_{2}.

2.2.1 $E I$ algebra

Let M be non-empty set. The set $E M^{*}$ is defined by

$$
E M^{*}=\left\{\sum_{i \in I} A_{i} \mid A_{i} \in 2^{M}, i \in I, I \text { is any non-empty indexing set }\right\}
$$

Definition 2.3. ([10]) Let M be a non-empty set A binary relation R^{I} on $E M^{*}$ defined as follows: for $\sum_{i \in I} A_{i}, \sum_{j \in J} B_{j} \in E M^{*},\left(\sum_{i \in I} A_{i}\right) R^{I}\left(\sum_{j \in J} B_{j}\right) \Longleftrightarrow$ (i) $\forall A_{i}(i \in I)$, $\exists B_{h}(h \in J)$ such that $A_{i} \supseteq B_{h}$; (ii) $\forall B_{j}(j \in J), \exists A_{k}(k \in I)$, such that $B_{j} \supseteq A_{k}$.
It's obvious that R^{I} is an equivalence relation. The quotient set $E M^{*} / R^{I}$ is denoted by $E M$. Indeed, any element of $E M$ is an equivalence class. Let $\left[\sum_{i \in I} A_{i}\right]_{R^{I}} \in E M$ be the set of all elements which are equivalent to $\sum_{i \in I} A_{i} \in E M^{*}$. For the sake of convenience, in the following, $\left[\sum_{i \in I} A_{i}\right]_{R^{I}}$ is denoted as $\sum_{i \in I} A_{i}$, if $\sum_{i \in I} A_{i} \in E M^{*}$ is not specified. That is to say, when $\sum_{i \in I} A_{i} \in E M^{*}$ is specified, $\sum_{i \in I} A_{i}$ only denote an element of the $E M^{*}$, otherwise $\sum_{i \in I} A_{i}$ always means the equivalence class $\left[\sum_{i \in I} A_{i}\right]_{R^{I}}$. For $\sum_{i \in I} A_{i}, \sum_{j \in J} B_{j} \in E M^{*}, \sum_{i \in I} A_{i}$ and $\sum_{j \in J} B_{j}$ are equivalent under the equivalence relation R^{I} means $\left[\sum_{i \in I} A_{i}\right]_{R^{I}}=\left[\sum_{j \in J} b_{j}\right]_{R^{I}}$.
Definition 2.4. ([19]) A complete lattice L is called completely distributive lattices, if one of the following conditions hold

$$
\bigwedge_{i \in I}\left(\bigvee_{j \in J_{i}} a_{i j}\right)=\bigvee_{f \in \prod_{i \in I} J_{i}}\left(\bigwedge_{i \in I} a_{i f(i)}\right), \quad \bigvee_{i \in I}\left(\bigwedge_{j \in J_{i}} a_{i j}\right)=\bigwedge_{f \in \prod_{i \in I} J_{i}}\left(\bigvee_{i \in I} a_{i f(i)}\right)
$$

where $\forall i \in I, \forall j \in J_{i}, a_{i j} \in L$, and $f \in \prod_{i \in I} J_{i}$ means f is a mapping $f: I \rightarrow \bigcup_{i \in I} J_{i}$ such that $f(i) \in J_{i}$.

Theorem 2.1. ([10]) For any $\sum_{i \in I} A_{i}, \sum_{j \in J} B_{j} \in E M$, then $(E M, \vee, \wedge)$ forms a completely distributive lattice under the binary compositions \vee and \wedge defined as follows,

$$
\begin{equation*}
\sum_{i \in I} A_{i} \vee \sum_{j \in J} B_{j}=\sum_{k \in I \sqcup J} C_{k}, \quad \sum_{i \in I} A_{i} \wedge \sum_{j \in J} B_{j}=\sum_{i \in I, j \in J}\left(A_{i} \cup B_{j}\right) \tag{2.2}
\end{equation*}
$$

where for any $k \in I \sqcup J$ (the disjoint union of I and J), $C_{k}=A_{k}$ if $k \in I$, and $C_{k}=B_{k}$ if $k \in J$.
$(E M, \vee, \wedge)$ is called the $E I$ algebra over M. For $\alpha=\sum_{i \in I} A_{i}, \beta=\sum_{j \in J} B_{j}$ $\in E M, \alpha \leq \beta \Longleftrightarrow \alpha \vee \beta=\beta \Leftrightarrow \forall A_{i}(i \in I), \exists B_{h}(h \in J)$ such that $A_{i} \supseteq B_{h} . M, \emptyset$ are the minimum and maximum element in $E M$, respectively.

In Example 2.1, let $\psi_{1}=m_{1} m_{5}+m_{2} m_{4} m_{9}, \psi_{2}=m_{4} m_{9}+m_{4} m_{8} \in E M$. By (2.2), the algebra operations of them are shown as follows:

$$
\begin{aligned}
\psi_{2} \vee \psi_{2} & =m_{1} m_{5}+m_{4} m_{9}+m_{4} m_{8} \\
\psi_{1} \wedge \psi_{2} & =m_{1} m_{4} m_{5} m_{9}+m_{1} m_{4} m_{5} m_{8}+m_{2} m_{4} m_{9}
\end{aligned}
$$

As long as we can determine the algebra operations \vee, \wedge of the few attributes in M, the logical operations \vee ("or") and \wedge ("and") of all complex attributes in $E M$ can also be
determined. A collection of a few attributes in M plays a similar role to the one of a "basis" used in linear vector spaces.

In the sequel, we denote the subsets of X with the lower case letters and the subsets of M with the capital letters, in order to distinguish the subsets of X from the subsets of M.

2.2.2 EII algebra

Definition 2.5. ([10]) Let X, M be non-empty sets. A binary relation $R^{I I}$ on the set
$E X M^{*}=\left\{\sum_{i \in I} u_{i} A_{i} \mid A_{i} \in 2^{M}, u_{i} \in 2^{X}, i \in I, I\right.$ is any non-empty indexing set $\}$ is defined as follows: for any $\sum_{i \in I} u_{i} A_{i}, \sum_{j \in J} v_{j} B_{j} \in E X M^{*}$,
$\left(\sum_{i \in I} u_{i} A_{i}\right) R^{I I}\left(\sum_{j \in J} v_{j} B_{j}\right) \Longleftrightarrow$ (i) $\forall u_{i} A_{i}(i \in I), \exists v_{h} B_{h}(h \in J)$ such that $A_{i} \supseteq B_{h}$, $u_{i} \subseteq v_{h}$; (ii) $\forall v_{j} B_{j}(j \in J), \exists u_{k} A_{k}(k \in I)$, such that $B_{j} \supseteq A_{k}, v_{j} \subseteq u_{k}$.

Obviously, $R^{I I}$ is an equivalence relation. The quotient set $E X M^{*} / R^{I I}$ is denoted by $E X M$. Similar to $E I$ algebra, the equivalent class $\left[\sum_{i \in I} a_{i} A_{i}\right]_{R^{I I}}$ is denoted as $\sum_{i \in I} a_{i} A_{i}$ in the sequel, if $\sum_{i \in I} a_{i} A_{i} \in E X M^{*}$ is not specified. For $\sum_{i \in I} a_{i} A_{i}, \sum_{j \in J} b_{j} B_{j} \in E X^{*}, \sum_{i \in I} a_{i} A_{i}$ and $\sum_{j \in J} b_{j} B_{j}$ are equivalent under the equivalence relation $R^{I I}$ means $\left[\sum_{i \in I} a_{i} A_{i}\right]_{R^{I I}}=\left[\sum_{j \in J} b_{j} B_{j}\right]_{R^{I I}}$.
Theorem 2.2. For any $\sum_{i \in I} u_{i} A_{i}, \sum_{j \in J} v_{j} B_{j} \in E X M$, then $(E X M, \vee, \wedge)$ forms a completely distributive lattice under the binary compositions \vee and \wedge defined as follows,

$$
\begin{align*}
& \sum_{i \in I} u_{i} A_{i} \vee \sum_{j \in J} v_{j} B_{j}=\sum_{k \in I \sqcup J} w_{k} C_{k} \tag{2.3}\\
& \sum_{i \in I} u_{i} A_{i} \wedge \sum_{j \in J} v_{j} B_{j}=\sum_{i \in I, j \in J}\left[\left(u_{i} \cap v_{j}\right)\left(A_{i} \cup B_{j}\right)\right] \tag{2.4}
\end{align*}
$$

$(E X M, \vee, \wedge)$ is called the $E I I$ algebra over X and M. For $\alpha=\sum_{i \in I} u_{i} A_{i}, \beta=$ $\sum_{j \in J} v_{j} B_{j} \in E X M, \alpha \leq \beta \Longleftrightarrow \alpha \vee \beta=\beta \Leftrightarrow \forall u_{i} A_{i}(i \in I), \exists v_{h} B_{h}(h \in J)$ such that $A_{i} \supseteq B_{h}, u_{i} \subseteq v_{h} . \emptyset M, X \emptyset$ are the minimum and maximum element in $E X M$, respectively.

2.2.3 $\quad E^{\#} I$ algebra

In order to better solve the real world problems, authors proposed an other AFS algebra, denoted as $E^{\#} I$ algebra [9].

Let X be non-empty set. The set $E X^{*}$ is defined by

$$
E X^{*}=\left\{\sum_{i \in I} a_{i} \mid a_{i} \in 2^{X}, I \text { is any non-empty indexing set }\right\}
$$

Definition 2.6. ([9]) Let X be a non-empty set. A binary relation $R^{\#}$ on $E X^{*}$ is defined as follows: for $\sum_{i \in I} a_{i}, \sum_{j \in J} b_{j} \in E X^{*},\left(\sum_{i \in I} a_{i}\right) R^{\#}\left(\sum_{j \in J} b_{j}\right) \Leftrightarrow \forall a_{i}(i \in I), \exists b_{h}$ $(h \in J)$ such that $a_{i} \subseteq b_{h}$ and $\forall b_{j}(j \in J), \exists a_{k}(k \in I)$ such that $b_{j} \subseteq a_{k}$.
It is obvious that $R^{\#}$ is an equivalence relation on $E X^{*}$. The quotient set $E X^{*} / R^{\#}$ is denoted by $E^{\#} X$. Similar to $E I$ algebra, equivalent class $\left[\sum_{i \in I} a_{i}\right]_{R^{\#}}$ is denoted as $\sum_{i \in I} a_{i}$ in the sequel, if $\sum_{i \in I} a_{i} \in E X^{*}$ is not specified. For $\sum_{i \in I} a_{i}, \sum_{j \in J} b_{j} \in E X^{*}, \sum_{i \in I} a_{i}$ and $\sum_{j \in J} b_{j}$ are equivalent under the equivalence relation $R^{\#}$ means $\left[\sum_{i \in I} a_{i}\right]_{R^{\#}}=$ $\left[\sum_{j \in J} b_{j}\right]_{R \#}$.

Theorem 2.3. For any $\sum_{i \in I} a_{i}, \sum_{j \in J} b_{j} \in E^{\#} X$, then $\left(E^{\#} X, \vee, \wedge\right)$ forms a completely distributive lattice under the binary compositions \vee, \wedge defined as follows,

$$
\begin{equation*}
\sum_{i \in I} a_{i} \vee \sum_{j \in J} b_{j}=\sum_{k \in I \sqcup J} c_{k}, \quad \sum_{i \in I} a_{i} \wedge \sum_{j \in J} b_{j}=\sum_{i \in I, j \in J}\left(a_{i} \cap b_{j}\right) . \tag{2.5}
\end{equation*}
$$

$\left(E^{\#} X, \vee, \wedge\right)$ is called an $E^{\#} I$ algebra over X. For $\alpha=\sum_{i \in I} u_{i}, \beta=\sum_{j \in J} v_{j}$ $\in E X M, \alpha \leq \beta \Longleftrightarrow \alpha \vee \beta=\beta \Leftrightarrow \forall u_{i}(i \in I), \exists v_{h}(h \in J)$ such that $u_{i} \subseteq v_{h} . \emptyset, X$ are the minimum and maximum element in $E^{\#} X$ respectively.

In Example 2.1, let $\mu_{1}=\left\{x_{1}, x_{2}, x_{5}\right\}+\left\{x_{2}, x_{3}\right\}, \mu_{2}=\left\{x_{4}\right\}+\left\{x_{1}, x_{2}\right\} \in E^{\#} X$. By (2.5), the algebra operations of them are shown as follows:

$$
\mu_{1} \vee \mu_{2}=\left\{x_{1}, x_{2}, x_{5}\right\}+\left\{x_{2}, x_{3}\right\}+\left\{x_{4}\right\}, \mu_{1} \wedge \mu_{2}=\left\{x_{1}, x_{2}\right\}
$$

In $[9,10]$, authors have been established the homomorphisms relationships between $E I$, $E I I$ and $E^{\#} I$ (i.e., the arrows 1, $\mathbf{2}$ and $\mathbf{3}$ in Figure 2.1). In next section, we will explore that there exist some homomorphism maps (i.e., the arrows $\mathbf{4}, \mathbf{5}$ and $\mathbf{6}$ in Figure 2.1) to reflect the relationship between VTCL and $E I, E I I$ and $E^{\#} I$, respectively.

Figure 2.1: The Relationship between AFS Algebra and VTCL

3 The relationship between AFS algebras and VTCL

For given two sets X, M, we can establish the $E I I$ algebra $(E X M, \vee, \wedge)$, which is a completely distributive lattice. First, we will discuss the relationship between the lattice $\left(\mathcal{B}_{\delta}(X, M, \mathcal{I}), \leq\right)$ and $(E X M, \vee, \wedge)$. To conveniently, we first define a subsets of $E X M$ as following:

$$
\begin{equation*}
\mathcal{I}(E X M)=\left\{\gamma \in E X M \mid \gamma=\sum_{i \in I} b_{i} B_{i}, i \in I, b_{i} \in X, B_{i} \in M, b_{i}=B_{i}^{\prime \delta}\right\} \tag{3.1}
\end{equation*}
$$

where operation ' δ defined by Definition 2.2.

Theorem 3.1. Let (X, M, \mathcal{I}) be a fuzzy context. Then $\mathcal{I}(E X M)$ is a sub EII algebra of $E X M$, i.e., $\zeta_{k} \in \mathcal{I}(E X M), k \in K, \vee_{k \in K} \zeta_{k} \in \mathcal{I}(E X M)$ and $\wedge_{k \in K} \zeta_{k} \in \mathcal{I}(E X M)$, and $\mathcal{I}(E X M, \vee, \wedge)$ is a completely distribute lattice.

Proof: It is easy to show that $\vee_{k \in K} \zeta_{k} \in \mathcal{I}(E X M)$. Since $E X M$ is a completely distributive lattice, so that

$$
\wedge_{k \in K} \zeta_{k}=\sum_{f \in \prod_{k \in K} I_{k}}\left(\cap_{k \in K} b_{k f(k)}, \cup_{k \in K} B_{k f(k)}\right) .
$$

where $f \in \prod_{k \in K} I_{k}$ means that f is a map $f: K \rightarrow \cup_{k \in K} I_{k}$ such that $f(k)=I_{k}$ for $\forall k \in K$. By Lemma 2.1 and the definition of $\mathcal{I}(E X M)$, we can get that for $\forall k \in K$, $j \in I_{k}$

$$
\left(\cup_{k \in K} B_{k f(k)}\right)^{\prime \delta}=\cap_{k \in K}\left(B_{k f(k)}\right)^{\prime} \delta=\cap_{k \in K} b_{k f(k)} .
$$

Therefore, $\wedge_{k \in K} \zeta_{k} \in \mathcal{I}(E X M)$. Moreover, $\mathcal{I}(E X M, \vee, \wedge)$ is a completely distributive lattice because $(E X M, \vee, \wedge)$ is a completely distributive lattice.

Theorem 3.2. Let (X, M, \mathcal{I}) be a fuzzy context, then $p_{1}^{\mathcal{I}}$ is a homomorphism map from the lattice $(E M, \vee, \wedge)$ to the lattice $\left(\mathcal{B}_{\delta}(X, M, \mathcal{I}), \leq\right)$, provided that for any $\sum_{i \in I} B_{i} \in E M$, $p_{1}^{\mathcal{I}}$ is defined by

$$
\begin{equation*}
p_{1}^{\mathcal{I}}\left(\sum_{i \in I} B_{i}\right)=\vee_{i \in I}\left(B_{i}^{\prime \delta}, B_{i}^{\prime \delta^{\prime} \delta}\right)=\left(\left(\cup_{i \in I} B_{i}^{\prime}\right)^{\prime \delta^{\prime} \delta}, \cap_{i \in I} B_{i}^{\prime \delta^{\prime} \delta}\right) \tag{3.2}
\end{equation*}
$$

where operation' δ defined by Definition 2.2.
Proof: By Lemma 2.1, one can see that for any $\sum_{i \in I} B_{i} \in E M$, and for $\forall i \in I$, $\left(B_{i}^{\prime \delta}, B_{i}^{\prime \delta^{\prime} \delta}\right) \in \mathcal{B}_{\delta}(X, M, \mathcal{I})$. Since $\left(\mathcal{B}_{\delta}(X, M, \mathcal{I}), \leq\right)$ be a complete lattice, so for any $\sum_{i \in I} B_{i} \in E M$,

$$
p_{1}^{\mathcal{I}}\left(\sum_{i \in I} B_{i}\right)=\left(\left(\cup_{i \in I} B_{i}^{\prime \delta}\right)^{\prime \delta^{\prime} \delta}, \cap_{i \in I}{B_{i}^{\prime} \delta^{\prime} \delta}\right)=\vee_{i \in I}\left(B_{i}^{\prime \delta}, B_{i}^{\prime \delta^{\prime} \delta}\right) \in \mathcal{B}_{\delta}(X, M, \mathcal{I})
$$

Now, we will show that $p_{1}^{\mathcal{I}}$ is a map from $E M$ to $\mathcal{B}_{\delta}(X, M, \mathcal{I})$. Suppose that $\sum_{i \in I_{1}} B_{i}=$ $\sum_{k \in I_{2}} B_{k} \in E M$, by definition of $E I$ algebra and Lemma 2.1, which means that $\forall i \in$ $I_{1}, \exists k \in I_{2}$ such that $B_{i} \supseteq B_{k}, B_{i}^{\prime} \delta \subseteq B_{k}^{\prime \delta}$, and $\forall k \in I_{2}, \exists i \in I_{1}$ such that $B_{k} \supseteq B_{i}$, $B_{k}^{\prime \delta} \subseteq B_{i}^{\prime \delta}$. Therefore, $\cup_{i \in I_{1}} B_{i}^{\prime \delta}=\cup_{k \in I_{2}} B_{k}^{\prime \delta}$ and $\left(\cup_{i \in I_{1}} B_{i}^{\prime \delta}\right)^{\prime} \delta^{\prime} \delta=\left(\cup_{k \in I_{2}} B_{k}^{\prime \delta}\right)^{\prime \delta^{\prime} \delta}$ hold.

Notice that both $\left(\left(\cup_{k \in I_{2}} B_{k}^{\prime \delta}\right)^{\prime} \delta^{\prime} \delta, \cap_{k \in I_{2}} B_{k}^{\prime \delta^{\prime} \delta}\right)$ and $\left(\left(\cup_{i \in I_{1}} B_{i}^{\prime} \delta\right)^{\prime} \delta^{\prime} \delta, \cap_{i \in I_{1}} B_{i}^{\prime \delta^{\prime} \delta}\right)$ are variable threshold concepts in $\mathcal{B}_{\delta}(X, M, \mathcal{I})$, hence

$$
\left(\left(\cup_{i \in I_{1}} B_{i}^{\prime \delta}\right)^{\prime \delta^{\prime} \delta}, \cap_{i \in I_{1}} B_{i}^{\prime \delta^{\prime} \delta}\right)=\left(\left(\cup_{k \in I_{2}} B_{k}^{\prime \delta}\right)^{\prime^{\prime} \delta}, \cap_{k \in I_{2}} B_{k}^{\prime \delta^{\prime} \delta}\right)
$$

which implies that $p_{1}^{\mathcal{I}}\left(\sum_{i \in I_{1}} B_{i}\right)=p_{1}^{\mathcal{I}}\left(\sum_{k \in I_{2}} B_{k}\right)$ hold.

Moreover, for any $\zeta=\sum_{i \in I} A_{i}, \eta=\sum_{j \in J} B_{i} \in E M$, by Lemma 2.1 and 2.3, we have

$$
\begin{aligned}
& p_{1}^{\mathcal{I}}(\zeta \vee \eta) \\
& =\left(\left[\left(\cup_{i \in I} A_{i}^{\prime \delta}\right) \cup\left(\cup_{j \in J} B_{j}^{\prime \delta}\right)\right]^{\prime \delta^{\prime} \delta},\left[\left(\cap_{i \in I} A_{i}^{\prime \delta^{\prime} \delta}\right) \cap\left(\cap_{j \in J} B_{j}^{\delta^{\prime} \delta}\right)\right]\right) \\
& p_{1}^{\mathcal{I}}(\zeta) \vee p_{1}^{\mathcal{I}}(\eta) \\
& =\left(\left(\cup_{i \in I} A_{i}^{\prime \delta}\right)^{\prime \delta^{\prime} \delta}, \cap_{i \in I} A_{i}^{\prime \delta^{\prime} \delta}\right) \vee\left(\left(\cup_{j \in J} B_{j}^{\prime \delta}\right)^{\prime \delta^{\prime} \delta}, \cap_{j \in J} B_{j}^{\prime \delta^{\prime} \delta}\right) \\
& =\left(\left[\left(\cup_{i \in I} A_{i}^{\prime \delta}\right)^{\prime \delta^{\prime} \delta} \cup\left(\cup_{j \in J} B_{j}^{\prime} \delta\right)^{\prime \delta^{\prime} \delta}\right]^{\prime \delta^{\prime} \delta},\left[\left(\cap_{i \in I} A_{i}^{\prime \delta^{\prime} \delta}\right) \cap\left(\cap_{j \in J} B_{j}^{\prime \delta^{\prime} \delta}\right)\right]\right) .
\end{aligned}
$$

Notice that both $p_{1}^{\mathcal{I}}(\zeta \vee \eta)$ and $p_{1}^{\mathcal{I}} \vee p_{1}^{\mathcal{I}}(\eta)$ are variable threshold concepts in $\mathcal{B}_{\delta}(X, M, \mathcal{I})$, hence $p_{1}^{\mathcal{I}}(\zeta \vee \eta)=p_{1}^{\mathcal{I}} \vee p_{1}^{\mathcal{I}}(\eta)$. From (3.2) and definition of $E I$ algebra, we have

$$
\begin{equation*}
p_{1}^{\mathcal{I}}(\zeta \wedge \eta)=p_{1}^{\mathcal{I}}\left(\sum_{i \in I, j \in J} A_{i} \cup B_{i}\right)=\vee_{i \in I, \in J}\left(\left(A_{i} \cup B_{j}\right)^{\prime \delta},\left(A_{i} \cup B_{j}\right)^{\prime \delta^{\prime} \delta}\right) \tag{3.3}
\end{equation*}
$$

In addition, for any $i \in I, j \in J$, it follows by Lemma 2.3 that

$$
\left(A_{i}^{\prime \delta}, A_{i}^{\prime \delta^{\prime} \delta}\right) \wedge\left(B_{j}^{\prime \delta}, B_{j}^{\prime \delta^{\prime} \delta}\right)=\left(\left(A_{i}^{\prime \delta} \cap B_{j}^{\prime \delta}\right),\left(A_{i}^{\prime \delta^{\prime} \delta} \cup B_{j}^{\prime \delta^{\prime} \delta}\right)^{\prime} \delta^{\prime} \delta\right)
$$

By Lemma 2.1, we have

$$
\left.\begin{array}{rl}
\left(A_{i}^{\prime} \delta^{\prime} \delta\right. & B_{j}^{\prime} \delta^{\prime} \delta
\end{array}\right)^{\prime} \delta^{\prime} \delta \quad=\left(\left(A_{i}^{\prime \delta^{\prime} \delta} \cup B_{j}^{\prime} \delta^{\prime} \delta\right)^{\prime} \delta\right)^{\prime \delta} .
$$

Therefore, for any $i \in I, j \in J$,

$$
\left(\left(A_{i} \cup B_{j}\right)^{\prime \delta},\left(A_{i} \cup B_{j}\right)^{\prime \delta^{\prime} \delta}\right)=\left(A_{i}^{\prime \delta}, A_{i}^{\prime \delta^{\prime} \delta}\right) \wedge\left(B_{j}^{\prime \delta}, B_{j}^{\prime \delta^{\prime} \delta}\right)
$$

and

$$
\left.\left.\begin{array}{rl}
p_{1}^{\mathcal{I}}(\zeta \wedge \eta) & =\vee_{i \in I, j \in J}\left[\left(A_{i}^{\prime \delta}, A_{i}^{\prime \delta^{\prime} \delta}\right) \wedge\left(B_{j}^{\prime \delta}, B_{j}^{\prime \delta^{\prime} \delta}\right)\right] \\
& =\left[\vee_{i \in I}\left(A_{i}^{\prime \delta}, A_{i}^{\prime \delta^{\prime} \delta}\right)\right] \wedge\left[\vee _ { j \in J } \left(B_{j}^{\prime \delta}, B_{j}^{\prime} \delta^{\prime} \delta\right.\right.
\end{array}\right)\right] .
$$

Thus, $p_{1}^{\mathcal{I}}$ is a homomorphism map from $(E M, \vee, \wedge)$ to $\left(\mathcal{B}_{\delta}(X, M, \mathcal{I}), \leq\right)$.
Theorem 3.3. Let (X, M, \mathcal{I}) be a fuzzy context, then $p_{2}^{\mathcal{I}}$ is a homomorphism map from the lattice $(\mathcal{I}(E X M), \vee, \wedge)$ to the lattice $\left(\mathcal{B}_{\delta}(X, M, \mathcal{I}), \leq\right)$, provided that for any
$\sum_{i \in I} b_{i} B_{i} \in E M, p_{2}^{\mathcal{I}}$ is defined by

$$
\begin{equation*}
p_{2}^{\mathcal{I}}\left(\sum_{i \in I} b_{i} B_{i}\right)=\vee_{i \in I}\left(b_{i}, b_{i}^{\prime \delta}\right)=\left(\left(\cup_{i \in I} b_{i}\right)^{\prime \delta^{\prime} \delta}, \cap_{i \in I} b_{i}^{\prime \delta}\right) \tag{3.4}
\end{equation*}
$$

where operation' δ defined by Definition 2.2.
Proof: By Lemma 2.1, for any $\sum_{i \in I} b_{i} B_{i} \in \mathcal{I}(E X M)$, one can derive that $\forall i \in I$, $\left(b_{i}, b_{i}^{\prime \delta}\right)=\left(B_{i}^{\prime \delta}, B_{i}^{\prime \delta^{\prime} \delta}\right) \in \mathcal{B}_{\delta}(X, M, \mathcal{I})$, this implies that

$$
\left(\left(\cup_{i \in I} b_{i}\right)^{\prime \delta^{\prime} \delta}, \cap_{i \in I} b_{i}^{\prime \delta}\right)=\vee_{i \in I}\left(b_{i}, b_{i}^{\prime \delta}\right) \in \mathcal{B}_{\delta}(X, M, \mathcal{I}) .
$$

First, we need to prove that $p_{\mathcal{I}}$ is a map from $\mathcal{I}(E X M)$ to $\mathcal{B}_{\delta}(X, M, \mathcal{I})$. Suppose that $\sum_{i \in I_{1}} b_{i} B_{i}=\sum_{k \in I_{2}} b_{k} B_{k} \in \mathcal{I}(E X M)$, i.e., $\forall i \in I_{1}, \exists k \in I_{2}$ such that $B_{i} \supseteq B_{k}$, $b_{k} \supseteq b_{i}$ and $\forall k \in I_{2}, \exists i \in I_{1}$ such that $B_{k} \supseteq B_{i}, b_{i} \supseteq b_{k}$, these imply that $b_{k}^{\prime \delta} \subseteq b_{i}^{\prime \delta}$ and $b_{k}^{\prime \delta} \supseteq b_{i}^{\prime}{ }^{\delta}$, so $\cup_{i \in I_{1}} b_{i}=\cup_{k \in I_{2}} b_{k}, \quad \cap_{i \in I_{1}} b_{i}^{\prime \delta}=\cap_{k \in I_{2}} b_{k}^{\delta}$. Therefore, $p_{2}^{\mathcal{I}}\left(\sum_{i \in I_{1}} b_{i} B_{i}\right)=$ $p_{2}^{\mathcal{I}}\left(\sum_{k \in I_{2}} b_{k} B_{k}\right)$, i.e., $p_{2}^{\mathcal{I}}$ is a map from $\mathcal{I}(E X M)$ to $\mathcal{B}_{\delta}(X, M, \mathcal{I})$. Then for any $\zeta=$ $\sum_{i \in I} a_{i} A_{i}, \eta=\sum_{j \in J} b_{j} B_{j} \in \mathcal{I}(E X M)$, by (3.4) and Lemma 2.3, we have

$$
\begin{aligned}
& p_{2}^{\mathcal{I}}(\zeta \vee \eta) \\
&=\left(\left[\left(\cup_{i \in I} a_{i}\right) \cup\left(\cup_{j \in J} b_{j}\right)\right]^{\prime} \delta^{\prime} \delta\right. \\
& p_{2}^{\mathcal{I}}(\zeta) \vee p_{2}^{\mathcal{I}}(\eta) \\
&=\left.\left.\left(\left(\cup_{i \in I} a_{i}\right)^{\prime \delta^{\prime} \delta}, \cap_{i \in I} a_{i}^{\prime \delta}\right) \cap\left(\cap_{j \in J} b_{i}^{\prime \delta}\right)\right]\right) \\
&=\left(\left[\left(\cup_{i \in I} a_{i}\right)^{\prime \delta^{\prime} \delta} \cup\left(\cup_{j \in J} b_{j}\right)^{\prime \delta^{\prime} \delta}\right]^{\prime \delta^{\prime} \delta},\left[\left(\cup_{i \in I} b_{i}\right)^{\prime \delta^{\prime} \delta}, \cap_{i \in I} b_{i}^{\prime} \delta\right)\right. \\
&\left.\left.\left.a_{i}^{\delta}\right) \cap\left(\cap_{j \in J} b_{j}^{\prime} \delta\right)\right]\right) .
\end{aligned}
$$

Recall that both $p_{2}^{\mathcal{I}}(\zeta \vee \eta)$ and $p_{2}^{\mathcal{I}}(\zeta) \vee p_{2}^{\mathcal{I}}(\eta)$ are variable threshold concepts in $\mathcal{B}_{\delta}(X, M, \mathcal{I})$, hence $p_{2}^{\mathcal{I}}(\zeta \wedge \eta)=p_{2}^{\mathcal{I}}(\zeta) \vee p_{2}^{\mathcal{I}}(\eta)$. By definition of $E I$ algebra, Lemma 2.3 and (3.4), we have

$$
\begin{equation*}
p_{\mathcal{I}}(\zeta \wedge \eta)=p_{\mathcal{I}}\left(\sum_{i \in I, j \in J} a_{i} \cap b_{i} A_{i} \cup B_{i}\right)=\vee_{i \in I, \in J}\left(a_{i} \cap b_{j},\left(a_{i} \cap b_{j}\right)^{\prime \delta}\right) \tag{3.5}
\end{equation*}
$$

Notice that for any $i \in I, j \in J$,

$$
\left(a_{i}, a_{i}^{\prime \delta}\right) \wedge\left(b_{j}, b_{j}^{\prime \delta}\right)=\left(a_{i} \cap b_{j},\left(a_{i}^{\prime \delta} \cup b_{j}^{\prime}\right)^{\prime} \delta^{\prime} \delta\right)
$$

By Lemma 2.1, for any $i \in I, j \in J$, we have

$$
\left(a_{i}^{\prime \delta} \cup b_{j}^{\prime \delta}\right)^{\prime \delta^{\prime} \delta}=\left(\left(a_{i}^{\prime \delta} \cup b_{j}^{\prime \delta}\right)^{\prime \delta}\right)^{\prime \delta}=\left(a_{i}^{\prime \delta^{\prime} \delta} \cap b_{j}^{\prime \delta^{\prime} \delta}\right)^{\prime \delta}=a_{i}^{\prime \delta} \cup b_{j}^{\prime \delta}=\left(a_{i} \cap b_{j}\right)^{\prime \delta} .
$$

So, $\left(a_{i}, a_{i}^{\prime}{ }^{\delta}\right) \wedge\left(b_{j}, b_{j}^{\prime}\right)=\left(a_{i} \cap b_{j},\left(a_{i} \cap b_{j}\right)^{\prime \delta}\right)$, and $p_{2}^{\mathcal{I}}(\zeta \vee \eta)=\vee_{i \in I, j \in J}\left(a_{i} \cap b_{j},\left(a_{i} \cap\right.\right.$ $\left.\left.b_{j}\right)^{\prime \delta}\right)=\vee_{i \in I, j \in J}\left[\left(a_{i}, a_{i}^{\prime}\right) \wedge\left(b_{j}, b_{j}^{\prime \delta}\right)\right]=p_{2}^{\mathcal{I}}(\zeta) \wedge p_{2}^{\mathcal{I}}(\eta)$.

Thus, $p_{2}^{\mathcal{I}}$ is a homomorphism map from $(E X M, \vee, \wedge)$ to $\left(\mathcal{B}_{\delta}(X, M, \mathcal{I}), \leq\right)$.

Theorem 3.4. Let (X, M, \mathcal{I}) be a fuzzy context, then $p_{3}^{\mathcal{I}}$ is a homomorphism map from the lattice $\left(E^{\#} X, \vee, \wedge\right)$ to the lattice $\left(\mathcal{B}_{\delta}(X, M, \mathcal{I}), \leq\right)$, provided that for any $\sum_{i \in I} b_{i} \in E M$, $p_{3}^{\mathcal{T}}$ is defined by

$$
\begin{equation*}
p_{3}^{\mathcal{I}}\left(\sum_{i \in I} b_{i}\right)=\vee_{i \in I}\left(b_{i}, b_{i}^{\prime \delta}\right)=\left(\left(\cup_{i \in I} b_{i}\right)^{\prime \delta^{\prime} \delta}, \cap_{i \in I} b_{i}^{\prime \delta}\right) . \tag{3.6}
\end{equation*}
$$

where operation' δ defined by Definition 2.2.
Proof: The proof is similar to Theorem 3.3.
By Theorems 3.2, 3.3 and 3.4, one can see that $\left(\mathcal{B}_{\delta}(X, M, \mathcal{I}), \leq\right)$ has algebraic properties similar to the $E I$ algebra $E^{\#} I$ algebra and $\mathcal{I}(E G M)$, the sub $E I I$ algebra of $E G M$.

Theorem 3.5. Let (X, M, \mathcal{I}) be a context. If $e: \mathcal{B}_{\delta}(X, M, \mathcal{I}) \rightarrow E X M$ is defined as following: for any $(b, B) \in \mathcal{B}_{\delta}(X, M, \mathcal{I}), e(b, B)=b B \in E X M$. Then the following conclusions hold:

T5-1. If $(a, A),(b, B) \in \mathcal{B}_{\delta}(X, M, \mathcal{I}),(a, A) \leq(b, B)$, then $e(a, A) \leq e(b, B)$;
T5-2. For any $(a, A),(b, B) \in \mathcal{B}_{\delta}(X, M, \mathcal{I}), e((a, A) \vee(b, B)) \geq e(a, A) \vee e(b, B)$, $e((a, A) \wedge(b, B)) \leq e(a, A) \wedge e(b, B)$.

Proof: T5-1 $(a, A) \leq(b, B) \Rightarrow a \subseteq b, A \supseteq B$. From definition of $E I I$ algebra, one has

$$
e(a, A) \vee e(b, B)=a A+b B=b B=e(b, B)
$$

This implies that $e(a, A) \leq e(b, B)$ in lattice $E X M$.
T5-2 $e((a, A) \vee(b, B))=e\left((a \cup b)^{\prime} \delta^{\prime} \delta, A \cap B\right)=(a \cup b)^{\prime} \delta^{\prime} \delta A \cap B$, moreover, by Lemma 2.1,

$$
(a \cup b)^{\prime \delta^{\prime} \delta} \supseteq a \cup b,(A \cup B)^{\prime \delta^{\prime} \delta} \supseteq A \cup B .
$$

Therefore, by definition of $E I I$ algebra, we have

$$
\begin{gathered}
e((a, A) \vee(b, B))=(a \cup b)^{\prime} \delta^{\prime} \delta \\
A \cap B \geq a A+b B=e(a, A) \vee e(b, B) \\
e((a, A) \wedge(b, B))=(a \cap b)(A \cup B)^{\prime \delta^{\prime} \delta} \leq a A \wedge b B=e(a, A) \wedge e(b, B)
\end{gathered}
$$

The proof is complete.
Theorem 3.6. Let (X, M, \mathcal{I}) be a context. If $f: \mathcal{B}_{\delta}(X, M, \mathcal{I}) \rightarrow E X M$ is defined as following: for any $(b, B) \in \mathcal{B}_{\delta}(X, M, \mathcal{I}), f(b, B)=b \in E^{\#} X$. Then the following conclusions hold:

T6-1. If $(a, A),(b, B) \in \mathcal{B}_{\delta}(X, M, \mathcal{I}),(a, A) \leq(b, B)$, then $f(a, A) \leq f(b, B)$;
T6-2. $\operatorname{For}(a, A),(b, B) \in \mathcal{B}_{\delta}(X, M, \mathcal{I}), f((a, A) \vee(b, B)) \geq f(a, A) \vee f(b, B)$,
$f((a, A) \wedge(b, B))=f(a, A) \wedge f(b, B)$.

Proof: T6-1 $(a, A) \leq(b, B) \Rightarrow a \subseteq b, A \supseteq B$. From definition of $E^{\#} I$ algebra, one has

$$
f(a, A) \vee f(b, B)=a+b=b=f(b, B) .
$$

This implies that $f(a, A) \leq f(b, B)$ in lattice $E X M$.
T6-2 $f((a, A) \vee(b, B))=f\left((a \cup b)^{\prime} \delta^{\prime} \delta, A \cap B\right)=(a \cup b)^{\prime} \delta^{\prime} \delta$, and by Lemma 2.1,

$$
(a \cup b)^{\prime \delta^{\prime} \delta} \supseteq a \cup b .
$$

So, $(a \cup b)^{\prime} \delta^{\prime} \delta \supseteq a,(a \cup b)^{\prime} \delta^{\prime} \delta \supseteq b$. Therefore, from the definition of $E^{\#} I$ algebra, we have

$$
\begin{aligned}
& f((a, A) \vee(b, B))=(a \cup b)^{\prime} \delta^{\prime} \delta \geq a+b=f(a, A) \vee f(b, B) \\
& f((a, A) \wedge(b, B))=a \cap b=a \wedge b=f(a, A) \wedge f(b, B) .
\end{aligned}
$$

The proof is complete.

Theorem 3.7. Let (X, M, \mathcal{I}) be a context. If $g: \mathcal{B}_{\delta}(X, M, \mathcal{I}) \rightarrow E M$ is defined as following: for any $(b, B) \in \mathcal{B}_{\delta}(X, M, \mathcal{I}), g(b, B)=B \in E M$. Then the following conclusions hold:

T7-1. \quad If $(a, A),(b, B) \in \mathcal{B}_{\delta}(X, M, \mathcal{I}),(a, A) \leq(b, B)$, then $g(a, A) \leq g(b, B) ;$
$T 7-2 . \quad \operatorname{For}(a, A),(b, B) \in \mathcal{B}_{\delta}(X, M, \mathcal{I})$,

$$
\begin{aligned}
& g((a, A) \vee(b, B)) \geq g(a, A) \vee g(b, B), \\
& g((a, A) \wedge(b, B)) \leq g(a, A) \wedge g(b, B),
\end{aligned}
$$

Proof: T7-1 $(a, A) \leq(b, B) \Rightarrow a \subseteq b, A \supseteq B$. From definition of $E I$ algebra, one has

$$
g(a, A) \vee g(b, B)=A+B=B=g(b, B) .
$$

This implies that $g(a, A) \leq g(b, B)$ in $E M$
$\mathrm{T} 7-2 g((a, A) \vee(b, B))=g\left((a \cup b)^{\prime} \delta^{\prime} \delta, A \cap B\right)=A \cap B$, we have

$$
g((a, A) \vee(b, B))=A \cap B \geq A+B=g(a, A) \vee g(b, B),
$$

by Lemma 2.1, $(A \cup B)^{\prime} \delta^{\prime} \delta \supseteq(A \cup B)$, so $(a \cap b)(A \cup B)^{\prime} \delta^{\prime} \delta \leq(a \cap b)(A \cup B)$,

$$
g((a, A) \wedge(b, B))=(a \cap b)(A \cup B)^{\prime} \delta^{\prime} \delta \leq a A \wedge b B=e(a, A) \wedge(b, B)
$$

The proof is complete.
Theorems $3.5,3.6,3.7$ imply that some properties of the $\left(\mathcal{B}_{\delta}(X, M, \mathcal{I}), \leq\right)$ can be studied in the framework of the AFS algebras. Moreover, the AFS algebras are more general algebra structures and can be applied to study fuzzy attributes, such as fuzzy clustering analysis, fuzzy decision trees, etc. About the detail application of AFS algebras, please see [11-14, 20].

4 Conclusion

In this paper, we discuss the homomorphism relationship between VTCL and AFS algebras. Three algebra homomorphism maps (i.e., Theorems 3.2, 3.3, 3.4) between AFS algebras and variable threshold concept lattice are established, by which one can see that the threshold concept lattice $\left(\mathcal{B}_{\delta}(X, M, \mathcal{I}), \leq\right)$ has algebraic properties similar to the AFS algebras. Some properties of the complete lattice $\left(\mathcal{B}_{\delta}(X, M, \mathcal{I}), \leq\right)$ can be studied in the framework of the AFS algebras.

References

[1] R. Belohlavek, Fuzzy Galois connections, Mathematical Logic Quarterly, 45 (1999) 497-504.
[2] R. Belohlavek, Concept lattices and order in fuzzy logic, Annals of Pure and Applied Logic, 128 (2004) 277-298.
[3] R. Belohlavek, A note on variable threshold concept lattices: Threshold-based operators are reducible to classical concept-forming operators, Information Sciences, 177 (2007) 3186-3191.
[4] P. du Boucher-Ryana, D. Bridge, Collaborative recommending using formal concept analysis, Knowledge-Based Systems, 19 (2006) 309-315.
[5] C. Carpineto, G. Romano, A lattice conceptual clustering system and its application to browsing retrieval, Mach. Learning, 10 (1996) 95-122.
[6] B. Ganter, R. Wille, Formal Concept Analysis: Mathematical Foundations, Springer, Berlin, 1999.
[7] R. Godin, H. Mili, G. Mineau, R. Missaoui, A. Arfi, T. Chau, Design of class hierarchies based on concept Galois lattices, TAPOS, 4 (1998) 117-134.
[8] O. Kwon, J. Kim, Concept lattices for visualizing and generating user profiles for context-aware service recommendations, Expert Systems with Applications, 36 (2009) 1893-1902.
[9] X. Liu, T. Chai, W. Wang, Approaches to the representations and logic operations for fuzzy concepts in the framework of axiomatic fuzzy set theory I, II, Information Sciences, 177(4)(2007) 1007-1045.
[10] X. Liu, The fuzzy theory based on AFS algebras and AFS structure, Journal of Mathematical Analysis and Applications, 217 (1998) 459-478.
[11] X. Liu, The topology on AFS algebra and AFS structure, Journal of Mathematical Analysis and Applications, 217 (1998) 479-489.
[12] X. Liu, W. Pedrycz, The development of fuzzy decision trees in the framework of axiomatic fuzzy set logic, Applied Soft Computing, 7(2007) 325-342.
[13] X. Liu, W. Pedrycz, T. Chai, M. Song, The development of fuzzy rough sets with the use of structures and algebras of axiomatic fuzzy sets, IEEE Transactions on Knowledge and Data Engineering, 21 (2009) 443-462.
[14] X. Liu, W. Wang, T. Chai, The fuzzy clustering analysis based on AFS theory, IEEE Transactions on Systems, Man and Cybernetics, Part B, 35 (2005) 1013-1027.
[15] J. Ma, W. Zhang, S. Cai, Variable threshold concept lattice and dependence space, Lecture Notes in Computer Science, LNAI 4223 (2006) 109-118.
[16] G. Mineau, R. Godin, Automatic structuring of knowledge bases by conceptual clustering, IEEE Transactions on Knowledge and Data Engineering, 7 (1995) 824-829.
[17] J. R. Quinlan, Decision trees and decision making, IEEE Transactions on Systems, Man and Cybernetics, Part C, 20 (1990) 339-346.
[18] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, L. Lakhal, Computing iceberg concept lattices with TITANIC, Data \& Knowledge Engineering, 42 (2002) 189-222.
[19] G. Wang, Theory of topological molecular lattices, Fuzzy Sets and Systems, 47 (1992) 351-376.
[20] L. Wang, X. Liu, Concept analysis via rough set and AFS algebra, Information Sciences, 178 (2008) 4125-4137.
[21] R. Wille, Knowledge acquisition by methods of formal concept analysis, in: E. Diday (Ed.), Data Analysis, Learning Symbolic and Numeric Knowledge, Nova Science, NewYork, (1989) 365-380.
[22] Q. Wu, Z. Liu, Real formal concept analysis based on grey-rough set theory, Knowledge-Based Systems, 22 (2008) 38-45.
[23] L. Zhang, X. Liu, Concept Lattice and AFS Algebra, Lecture Notes in Computer Science, LNAI 4223 (2006) 290-299.
[24] W. Zhang, J. Ma, and S. Cai, Variable threshold concept lattice, Information Sciences, 177 (2007) 4883-4892.
[25] Y. Zhao, W. A. Halang and X. Wang, 'Rough ontology mapping in E-Business integration, Studies in Computational Intelligence, 37 (2007) 75-93.

Lidong Wang received the BS and MS degrees in mathematics from Inner Mongolia University, Hohhot, P.R. China in 2003 and Dalian University of Technology, Dalian, P.R. China in 2006, respectively, and the Ph.D degree in control theory and control engineering from the Research Center of Information and Control, Dalian University of Technology,
Dalian, P.R. China in 2009. He is currently a lecturer in the Department of Mathematics, Dalian Maritime University, Dalian, P.R. China. His research interests include AFS (Axiomatic Fuzzy Set) theory and its applications, knowledge discovery and representations, granular computing.

Xiaodong Liu received the BS and MS degrees in mathematics from Northeastern Normal University in 1986 and Jilin University, Jilin, P.R. China, in 1989, respectively, and the PhD degree in control theory and control engineering from Northeastern University, Shenyang, P.R. China, in 2003. He is currently a professor in the Research Center of Information
 and Control, Dalian University of Technology, Dalian, P.R. China. He has proposed the Axiomatic Fuzzy Set (AFS) theory. His research interests include AFS theory and its applications, knowledge discovery and representations, data mining, pattern recognition, and design of intelligent control systems.

[^0]: *Supported by the Natural Science Foundation of China under Grant 60875032.

