Login New user?  
01-Applied Mathematics & Information Sciences
An International Journal
               
 
 
 
 
 
 
 
 
 
 
 

Content
 

Volumes > Volume 10 > No. 2

 
   

Stability and Spatial Chaos in 2D Hénon System

PP: 739-746
doi:10.18576/amis/100234
Author(s)
Fuyan Sun, Zongwang Lü,
Abstract
This paper is concerned with two-dimensional(2-D) discrete system of the following form xm+1,n +axm,n+1 = f (m, (1+a)xm,n,bxm−1,n), where a,m,b is a real parameters.We investigate the fixed planes, stability of the fixed planes and spatial chaos behavior for this system. A stability condition for the fixed plane is given, and it is proven analytically that for some parameter values the system has a transversal homoclinic orbit, which is a verification of this system to be chaotic in the sense of Li-Yorke. These results extend the corresponding results in the one-dimensional (1-D) H´enon system: xm+1,n0 = f (m, xm,n0,bxm−1,n0 ), where n0 is a fixed integer. These results also extend the corresponding results in the 2-D Logistic system: xm+1,n +axm,n+1 = f (m, (1+a)xm,n,),

  Home   About us   News   Journals   Conferences Contact us Copyright naturalspublishing.com. All Rights Reserved